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ABSTRACT: In this paper, a numerical study of the Poiseuille flow of an electrically conducting fluid between two 

inclined parallel plates is presented. The plates are non-conducting as well as isothermal. The viscous and Ohmic 

dissipation terms are taken into account in the energy equation.  The coupled nonlinear equations of momentum and 

energy are solved numerically using finite difference scheme. The effects of various parameters such as Hartmann 

number, Grashof number, Prandtl number, Eckert number and angle of inclination on the velocity and temperature 

distributions are discussed numerically and presented through graphs. 

 

 

KEYWORDS: Poiseuille flow, viscous dissipation, Ohmic dissipation, finite difference technique, inclined channel.  

I. INTRODUCTION 

 

The study of magnetohydrodynamics (MHD) flow and heat transfer in channel has been a topic of great interest for 

many researchers due to its important applications in many engineering devices concerning plasma physics, 

geophysics, petroleum industries, MHD pump, MHD flowmeter, cooling of nuclear reactors and nuclear fusion 

technology. In 1937, Hartmann [1] carried out the pioneering work in the study of steady MHD channel flow of an 

electrically conducting fluid under a uniform magnetic field tranverse to insulated channel wall. Alireza and Shai [2] 

investigated the effect of temperature-dependent transport properties on the developing MHD flow and heat transfer in 

parallel channel whose walls are held at constant and equal temperature. Siegel [3], Perlmutter and Siegel [4], Alpher 

[5] and Osterle and Young [6] studied heat transfer analysis in Hartmann problem for free and forced convective flow 

to an electrically conducting fluid in a channel.  Chutia and Deka [7] presented a numerical study on steady laminar 

MHD flow and heat transfer of an electrically conducting fluid in a rectangular duct in the presence of oblique 

transverse magnetic field. 

Hartmann flow in a horizontal channel cited above cannot be used to understand the flow characters if the horizontal 

pipe or channel is tilted because in this case due to earth‟s gravitation, there will be an external body force on the flow. 

Basically, inclined geometry has enormous applications in heat transfer technology like solar collector [8]. Taking 

into account these facts, Malashetty and Umavathi [9] studied two phase fluid flow and heat transfer in an 

inclined channel. Later on, Umavathi et al. [10] investigated the Poiseuille-Couette flow of two immiscible fluids 

between inclined parallel plates, where one of the fluids was assumed to be electrically conducting while the other fluid 

and channel walls were assumed to be electrically insulating. The viscous and Ohmic dissipation terms were taken into 

account in the energy equation. Sharma and Singh [11] investigated numerically transient free convective flow of a 

viscous incompressible electrically conducting fluid along an inclined isothermal non-conducting plate in the presence 

of transverse magnetic field with viscous and Ohmic dissipations. Goyal and Kumari [12] studied the free convection 

heat and mass transfer MHD oscillatory flow of visco-elastic fluid between two inclined porous plates in the presence 

of radiation absorption, chemical reaction and thermal radiation. Daniel and Daniel [13] studied convective flow of two 

immiscible fluids and heat transfer with porous along an inclined channel with pressure gradient. Singh and Singh [14] 

studied MHD flow heat transfer of a dusty visco-elastic liquid down an inclined channel in porous medium. Badari 

Narayana et al. [15] studied numerically steady flow of a Jeffrey fluid in an inclined two-dimensional   channel by 

finite difference analysis. Oulaid et al. [16] presented a numerical study of simultaneous heat and mass transfer with 

phase change in an inclined channel formed by two parallel plates. Mekheimer [17] investigated the nonlinear 
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peristaltic transport of a magnetic field in an inclined planar channel. Krishna Kumari et al. [18] studied the peristaltic 

pumping of a Casson fluid in an inclined channel under the effect of a magnetic field.   

Aim of the present paper is to investigate the Poiseuille flow of an electrically conducting fluid between two isothermal 

non-conducting inclined parallel plates in the presence of transverse magnetic field with viscous dissipation and Ohmic 

dissipation. The governing equations of momentum and energy are solved using finite difference scheme. The velocity 

and temperature distributions are discussed numerically and presented in terms graphics for various values of physical 

parameters. 

II. MATHEMATICAL MODEL 

Consider steady two-dimensional flow of a viscous incompressible electrically conducting fluid between two infinite 

inclined parallel plates extending in the 𝑧 and 𝑥-directions, making an angle 𝜙 with the horizontal direction. The two 

plates are non-conducting and maintained at different constant temperatures 𝑇0  and 𝑇1 . The 𝑥-axis is taken parallel 

along the axis of the channel and 𝑦-axis is normal to the plates. A magnetic field of uniform intensity 𝐵0 is applied in 

𝑦-direction which is normal to the plates. The flow is assumed to be unidirectional, steady, laminar and fully developed. 

It is assumed that the magnetic Reynolds number is sufficiently small so that the induced magnetic field can be 

neglected, and the induced electric field is assumed to be negligible. It is also assumed that the electrical field due to 

polarization of charges and Hall Effect are neglected.  The Oberbeck-Boussinesq approximation is employed for 

density variation and the flow is assumed to be driven by the constant pressure gradient (−𝜕𝑝/𝜕𝑥). Under these 

assumptions, the governing equations of momentum and energy are given below (Umavathi et al. [10]) :  

 

         

 
Fig. 1: The physical configuration of the problem 

 

𝜇
𝑑2𝑢

𝑑𝑦2 + 𝜌𝑔𝛽 𝑇 − 𝑇0 𝑆𝑖𝑛𝜙 − 𝜎𝐵0
2𝑢 =

𝑑𝑝

𝑑𝑥
                                                                                                                   (1) 

 

𝑘
𝑑2𝑇

𝑑𝑦2+𝜇 
𝑑𝑢

𝑑𝑥
 

2
+σ𝐵0

2𝑢2=0                                                                                                                                              (2) 

 

where 𝑢  is the 𝑥 -component of velocity,  𝑇  is the fluid temperature, 𝜇  is the coefficient of viscosity, 𝑔  is the 

acceleration due to gravity, 𝛽 is the thermal expansion coefficient, σ is the electrical conductivity and 𝑘 is the thermal 

conductivity. 

 

The boundary conditions on velocity and temperature are 
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 𝑢 = 0, 𝑇 = 𝑇0 at  𝑦 = 0
𝑢 = 0, 𝑇 = 𝑇1 at  𝑦 = 𝑎

                                                                                                                                               (3) 

 

Eqs. (1) and (2) along with boundary conditions (3) are made dimensionless by using the following transformations: 

 

𝑢∗ =
𝑢

𝑢0
, 𝑦∗ =

𝑦

𝑎
, 𝑇∗ =

𝑇−𝑇0

𝑇1−𝑇0
                                                                                                                                       (4) 

 

Where  𝑢0 = −
𝑎2

𝜇

𝑑𝑝

𝑑𝑥
 

 

Using Eq. (4) into Eqs. (1) and (2), and removing asterisks, the non-dimensional governing equations become 

 
𝑑2𝑢

𝑑𝑦2 +
𝐺𝑟

𝑅𝑒
 𝑆𝑖𝑛𝜙 𝑇 −𝑀2𝑢 + 1 = 0                                                                                                                               (5) 

 

𝑑2𝑇

𝑑𝑦2 + 𝐸𝑐𝑃𝑟  
𝑑𝑢

𝑑𝑦
 

2
+ 𝐸𝑐𝑃𝑟𝑀2𝑢2 = 0                                                                                                                         (6) 

 

Where 

𝐺𝑟 =
𝑔𝛽𝑎3 𝑇1−𝑇0 

𝜐2 ,  𝑅𝑒 =
𝑢0𝑎

𝜐
 ,  𝑀 = 𝐵0𝑎  

𝜎

𝜇
 

1/2
 , 𝐸𝑐 =

𝑢0
2

𝐶𝑝  𝑇1−𝑇0 
  and 𝑃𝑟 =

𝜇𝐶𝑝

𝑘
   are the Grashof number, the 

Reynolds number, the Hartmann number, the Eckert number and the Prandtl  number, respectively. 

 

The corresponding boundary conditions (3) on velocity and temperature become 

 

 𝑢 = 0, 𝑇 = 0 at  𝑦 = 0
𝑢 = 0, 𝑇 = 1 at  𝑦 = 1

                                                                                                                                                   (7) 

 

III.  NUMERICAL SOLUTIONS 

 
The governing differential Eqs. (5) and (6)  are to be solved subject to the boundary conditions (7) for the velocity and 

temperature distributions. These equations are coupled and nonlinear because of the inclusion of the viscous and Ohmic 

dissipation terms in the energy equation. Hence the closed form solutions are difficult to obtain. Here, an attempt has 

been made to solve these equations numerically employing finite difference technique. Replacing the derivatives with 

corresponding central difference approximations of second order accuracy, we obtain finite difference equations of Eqs. 

(5) and (6) as following : 

 
𝑢 𝑖+1−2𝑢𝑖+𝑢𝑖−1

2ℎ
+

𝐺𝑟

𝑅𝑒
 𝑆𝑖𝑛𝜙 𝑇𝑖 −𝑀2𝑢𝑖 + 1 = 0                                                                                                            (8) 

 

𝑇𝑖+1−2𝑇𝑖+𝑇𝑖−1

2ℎ
+ 𝐸𝑐𝑃𝑟  

𝑢 𝑖+1−𝑢𝑖−1

2ℎ
 

2
+ 𝐸𝑐𝑃𝑟𝑀2𝑢𝑖

2 = 0                                                                                              (9) 

 

Simplifying Eqs. (8) and (9) for velocity and temperature, we obtain 

 

𝑢𝑖 = 𝐶5 𝑢𝑖+1 + 𝑢𝑖−1 + 𝐶6𝑇𝑖 + 𝐶7                                                                                                                            (10) 

 

𝑇𝑖 = 0.5 𝑇𝑖+1 + 𝑇𝑖−1 + 𝐶8 𝑢𝑖+1 + 𝑢𝑖−1 + 𝐶9𝑢𝑖
2                                                                                                 (11)   

Where 
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𝐶1 =
𝐺𝑟

𝑅𝑒
𝑆𝑖𝑛𝜙, 𝐶2 = 𝑀2, 𝐶3 = 𝐸𝑐𝑃𝑟 , 𝐶4 =  𝐶2𝐶3 ,  𝐶5 =

1

2+ℎ2𝐶2
 , 𝐶6 =

ℎ2𝐶1

2+ℎ2𝐶2
 ,  𝐶7 =

ℎ2

2+ℎ2𝐶2
 ,  𝐶8 =

𝐶4

4
  and  

𝐶9 =
ℎ2𝐶5

8
  are  constants. 

The discretized boundary conditions on velocity and temperature are 

 

 𝑢𝑖 = 0,     𝑇𝑖 = 0       at  𝑖 = 1
𝑢𝑖 = 0, 𝑇𝑖 = 1  at  𝑖 = 𝑚 + 1

                                                                                                                                      (12) 

 

where index 𝑖  refers to 𝑦 and 𝑚 denotes the number of grids inside the computational domain in the direction of 𝑌. 

IV.   RESULTS AND DISCUSSION 

 

The Poiseuille flow of an electrically conducting fluid between two inclined parallel plates in the presence of transverse 

magnetic field is investigated numerically by developing finite difference codes in Matlab programming. 

Computational domain is divided into 100 uniform grids. The computed values of 𝑢𝑖  and 𝑇𝑖  appearing in the discretized 

Eqs. (10) and (11) subject to the boundary conditions (12) with selecting non-dimensional parameters 𝑀, 𝐺𝑟, 𝑅𝑒, 𝐸𝑐, 𝜙 

and 𝑃𝑟  have been iterated to a suitable number so that the convergent solutions of 𝑢𝑖  and 𝑇𝑖  are considered to be 

achieved when the maximum differences between two successive iterations are less than a tolerance, 10−7. Numerical 

results for velocity and temperature distributions are presented graphically by using the software package “Matlab 

R2008b” in Figs. 2 to 9.    

 
Fig. 2: Velocity distributions at various Hartmann number M for fixed Re = 1, Gr = 3, ϕ = 450, Ec = 0.1 and 

Pr = 0.71 
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Fig. 3: Velocity distributions at various Grashof number Gr for fixed Re = 1, M = 2, ϕ = 450, Ec = 0.1 and Pr =

0.71 

 

 
Fig. 4: Velocity distributions at various inclination angles ϕ for fixed Re = 1, Gr = 3, M = 2, Ec = 0.1 and 

Pr = 0.71 
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Fig. 5: Velocity distributions at various Reynolds number Re for fixed Gr = 3, M = 2, ϕ = 450, Ec = 0.1 and 

Pr = 0.71 

 

 
Fig. 6: Velocity distributions at various Eckert number Ec for fixed Re = 1, Gr = 3, M = 2, ϕ = 450 and Pr = 0.71 
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Fig. 7: Temperature distributions at various Eckert number Ec for fixed, Re = 1, Gr = 3, M = 2, ϕ = 450 and 

Pr = 0.71 

 

 

 
Fig. 8: Velocity distributions at various Prandtl number Pr for fixed, Re = 1, Gr = 3, M = 2, ϕ = 450 and Ec = 0.1  
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Fig. 9: Temperature distributions at various Prandtl number Pr for fixed Re = 1, Gr = 3, M = 2, ϕ = 450 and 

Ec = 0.1   

 

In Fig. 2, the effect of Hartmann number on velocity distribution is shown. It is evident from this figure that velocity 

distribution decreases for increasing values of Hartmann number 𝑀. Increasing value of the Hartmann number has a 

tendency to retard the fluid moving forward, this is due to fact that the Hartmann number represents the ratio of the 

Lorentz force to the viscous force, implying that the larger the Hartmann number, the stronger the retarding effect on 

fluid velocity. It reduces the volumetric flow rate in the channel and the wall friction. 

The effect of Grashof number on the velocity distribution is shown in Fig. 3. It is noticed that velocity distribution 

increases for increasing values of Grashof number 𝐺𝑟. Physically, an increase in the value of Grashof number indicates 

an increase of buoyancy forces which support the flow. 

The effect of inclination angle 𝜙 on velocity is depicted in Fig. 4; it is observed that the increase in the value of 𝜙 

increases the fluid velocity. This is due to the fact that magnitude of the driving force increases with the increase in 

inclination angle.     

Fig. 5 shows the effect of Reynolds number 𝑅𝑒 on velocity. Velocity is found to be decreases gradually with the 

increasing value of  𝑅𝑒.  

We infer from this study that the maximum velocity does not occur in the middle of the channel but moves towards the 

upper wall as the value of  𝐺𝑟  and 𝜙 increase.  

In Figs. 6 and 7 the effects of Eckert number on velocity and temperature are presented respectively. Both the velocity 

and temperature increases with an increase in 𝐸𝑐. The increase of temperature resulting from the increasing dissipation 

effect due to large 𝐸𝑐, and as a consequence the velocity increases for the increasing buoyancy force in the momentum 

equation. 

The effects of Prandtl number on velocity and temperature are depicted in Figs. 8 and 9 respectively, both velocity and 

temperature increases as Prandtl number 𝑃𝑟 increases.  

V. CONCLUSION 

 

A numerical investigation has been performed for steady Poiseuille flow of an electrically conducting fluid between 

two isothermal non-conducting inclined parallel plates in the presence of transverse magnetic field with viscous 

dissipation and Ohmic dissipation. The governing equations of momentum and energy are solved using finite difference 

scheme. We conclude from this investigation that fluid velocity decreases for increasing values of Hartmann 𝑀 and 
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Reynolds number 𝑅𝑒; and increases for increasing values of Grashof number 𝐺𝑟, Eckert number 𝐸𝑐, Prandtl number 

𝑃𝑟 and angle of inclination 𝜙. It is also observed that velocity profile is not parabolic and moves towards the upper 

heated wall as the values of 𝐺𝑟, 𝐸𝑐, 𝑃𝑟 and 𝜙 increases. Whereas temperature field increases from lower plate to upper 

plate as 𝐸𝑐 and 𝑃𝑟 increases. 
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