
      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4664 

 

 

Developing Software Module Based on TT-

RBAC Model of Access Control  

Kadirov Mirhusan Mirpulatovich, Tulyaganov Zoxidjon Yakubdjanovich 

Assistant professor, Department of Information Technologies, Tashkent State Technical University, Tashkent, 

Uzbekistan 

 
 

ABSTRACT: The article is devoted for managing and controlling users’ permissions, defining users’ rights, also 

developing new profitable role-based access control (RBAC) model in collaborative systems. The basis for the 

protection of the processed information from unauthorized access is the implementation of a delimitating policy for 

access to file objects. 

 

KEYWORDS: TT-RBAC system, object-oriented technology, user, role, access control, role-based access control, 

collaborative systems, model of access control, attribute, software module. 

 

I. INTRODUCTION 

The rapid growth of heterogeneity and scale of modern corporate networks leads to an excessive increase in the 

vulnerability of not only external but also internal network services. 

 

The larger the scale of the network, the more difficult it is for the administrator to provide reliable network 

protection, providing adequate response to all possible attempts to break into the computer system. It should be taken 

into account that threats to information security can be associated not only with unauthorized access to workstations, 

servers or communication lines. Attacks can be subjected to specialized devices that perform functions within the 

network routing of the message flow. An attacker can redirect the flow of messages to perform further unauthorized 

actions on it. 

 

The solution of the task of protecting information from unauthorized access in any information system is based 

on the implementation of control and delineation of the subjects' access rights to the protected resources, primarily to 

file objects, since they are intended for storing the processed data. At the same time, users who are identified by 

accounts are the subjects of access in the demarcation policy. Rules for access of subjects to objects are usually set in 

the form of an access matrix (the matrix representation is expedient from the point of view of the possibility of 

transposing a matrix that allows to represent two ways of defining a differentiation policy - subjects to objects or, 

conversely, to objects of subjects). 

 

II. ENFORCING OF TT-RBAC MODEL IN COLLABORATIVE SYSTEM 
 

TT-RBAC system, which is researched, is developed with object-oriented technology. We define eight classes 

that represent user, role, permission, object, operation, team, task and session, respectively.  

All of them inherit from a superclass named TTRObject that defines the common variables and methods 

needed by its subclasses. These classes are called TT-RBAC core classes. The major variables and methods defined for 

these classes and their inheritance relations are shown in Figure 1.  

TTRObject is the superclass of all other TT-RBAC core classes. In TTRObject there define three variables; 

they are id, type and state that are used to hold an entity’s identifier, type and state, respectively. Entity type could be 

user, role and so on[1].  

An entity could be in active state or inactive state. Entity state decides if an entity can be used for access 

control. There are various factors, such as context, that can affect entity state. 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4665 

 

 

<<metaclass>>

TTRObject

User

Role

Permission

Object

Operation

Team 

Task

Session 

(a)  

User

- roles

- teams

- addRole()

- removeRole()

- getRoles()

- addTeam()

- removeTeam()

- getTeams()

- getUserRolesPermissions()

- getUserTeamsPermissions()

- getUserPermissions()

- getUserRolesOperationsOnObject()

- getUserTeamsOperationsOnObject()

- getUserOperationsOnObject()

- checkUserRolesAccess()

- checkUserTeamsAccess()

- check_user_access()

Role 

- permissions

- addPermissions()

- removePermissions()

- getPermissions()

- getRoleOperationsOnObject()

- check_role_access()

Permissions

- object

- operation

- setObject()

- getObject()

- addTeam()

- setOperation()

- getOperation()

- equal()

- check_role_access()

Operation 

- equal()

- check_operation()

Object

- equal()

- check_object()

Session 

- user

- setUser()

- getUser()

- check_access()

<<metaclass>>

TTRObject

- id

-type

- state 

- setID()

- getID()

- setType()

- getType()

- setState()

- getState())

Team

- roles

- tasks

- addRole()

- removeRole()

- getRoles()

- addTask()

- removeTask()

- getTasks()

- getTeamRolesPermissions()

- getTeamTasksPermissions()

- getTeamPermissions()

- getTeamRolesOperationsOnObject()

- getTeamTasksOperationsOnObject()

- getTeamOperationsOnObject()

- checkUserRolesAccess()

- checkTeamTasksAccess()

- check_team_access()

Task

- permissions

- addPermissions()

- removePermissions()

- getPermissions()

- getTaskOperationsOnObject()

- check_task_access()

(b)
 

Figure 1: TT-RBAC core classes: (a) inheritances; (b) definitions 

 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4666 

 

 

User is the class used to describe users. The variables roles and teams are used to hold Role objects and Team 

objects, respectively. The methods checkUserRolesAccess, checkUserTeamsAccess and check_user_accessare used for 

checking user access.  

Role is the class used to describe roles. The variable permissions is used to hold permission objects. The 

method check_role_access is used for checking role access.  

Permission is the class used to describe permissions. The variables object and operation are used to hold object 

and operation objects, respectively. The method equal is used for comparing with an input permission object. The 

method check_permission is used for checking permission access.  

Object is the class used to describe resources. The method equal is used for comparing with an input object 

name. The method check_object does the similar function to equal, except it also considers object’s state.  

Operation is the class used to describe operations. The method equal is used for comparing with an input 

operation name. The method check_operation does the similar function to equal, except it also considers object’s state.  

Team is the class used to describe teams. The variables roles and tasks are used to hold the role objects and 

task objects, respectively. The methods checkTeamRolesAccess, checkTeamTasksAccess and check_team_accessare 

used for checking team access.  

Task is the class used to describe tasks. The variable permissions is used to hold the permission objects. The 

method check_task_access is used for checking task access.  

Session is the class used to describe sessions at runtime. The variable user is used to hold a user object. The 

method check_access is used for checking session access.  

From the above introduction, we know these classes are not independent. Their relations are shown in Figure 2.  

Session 

- user

User

- roles

- teams

Role

- permissions

Task

- permissions

Team

- roles

- tasks

Permission

- object

- operation

Object

Operation

 
Figure 2: TT-RBAC core class relations 

 

 

III. CONTEXT CONSTRAINTS OF TT-RBAC 

 

In TT-RBAC, every entity’s state can be active or inactive. One entity can be used for access control only 

when it is in active state. For example, the permissions held by a role are available to a user only when this role is in 

active state. One entity’s state change may affect the permissions that are available to other entities. For example, if an 

object is deactivated, then all the permissions that relate to this object are deactivated. This effect will be propagated 

among all the entities that relate to these permissions. One entity’s state change may also affect other entities’ state. For 

example, all the employees are assigned to role Staff, and the role Staff is the prerequisite role to all other roles. If the 

role Staff is deactivated in a session, then all the roles depending on it will also be deactivated. In TT-RBAC different 

kinds of entities have different effective scopes to other entities. The entity effective scopes are shown in Figure 3. The  

arrows indicate the entities’ effective directions. Their meanings are described as follows[2]: 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4667 

 

 

USERS

ROLES

SESSIONS

TEAMS TASKS

PERMS Object

 
Figure 3: Effective scopes of TT-RBAC entities 

 

̶ if an object is deactivated, then all the permissions that relate to it will be deactivated; 

̶ if a permission is deactivated, then all the roles and tasks that relate to it will be affected. This permission will 

be withdrawn from them. This permission’s state change may also affect other permissions that depend on it; 

̶ if a role is deactivated, then all the users and teams that relate to it will be affected. This role will be 

withdrawn from them. This role’s state change may also affect other roles that depend on it; 

̶ if a task is deactivated, then all the teams that relate to it will be affected. This task will be withdrawn from 

them. This task’s state change may also affect other tasks that depend on it; 

̶ if a team is deactivated, all the users who relate to it will be affected. This team will be withdrawn from them. 

This team’s state change may also affect other teams that depend on it; 

̶ if a user is deactivated, all the sessions that belong to him/her will be affected. These sessions will be 

terminated.  

 A user obtains privileges through the active roles in sessions. A role can be activated as a session-role or a 

session-team-role. If a role is activated as a session-role, then the user will get all the permissions assigned to this role. 

If a role is activated as a session-team-role, then the permissions that this user can get are also decided by which tasks 

have been activated in the team. It means that the permissions of a session-team-role are filtered by the permissions of 

session-team-tasks. In a session the permissions available to a user are the union of all permissions gotten through 

session-roles and session-teams. In this section we investigate the TT-RBAC evaluation process.  

In TT-RBAC systems authorization requests can be formatted as (user, object, operation). It states that the 

request user wants to perform the request operation on the request object. The request user information should include 

all the active session-roles and active session-teams in which also include the active session-team-roles and active 

session-team-tasks. The structure of TT-RBAC authorization request is shown in Figure 4. TT-RBAC authorization 

requests are evaluated by TT-RBAC decision makers [3].  

AuthorizationRequest User

- roles

- teams

Role

TaskTeam

- roles

- tasks

Object

- name

Operation

-name

 
Figure 4: Structure of TT-RBAC authorization request 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4668 

 

 

In order to improve the performance of TT-RBAC evaluation, it was developed a novel TT-RBAC evaluation 

mechanism, in which a decision maker is specially created for each authorization request. This decision maker is then 

used to evaluate the requested permission formed by the request object and request operation. In fact, this decision 

maker is a user object that is created according to the request user. So the decision maker is also called user decision 

maker. The role, team, team-role and team-task objects contained in a request user are not ground. For example, the 

role objects in a request user do not contain permission objects. On the contrary, all the objects inside a decision maker 

are ground. For example, all the role objects in a decision maker contain all the required permission objects, and these 

permission objects are also ground. After all the entities relating to a decision maker are ground, this user object is 

ready for making access control decisions [4]. The structure of TT-RBAC decision maker is shown in Figure 5.  

User

- roles

- teams
- check_user_access()

Role

- permissions

- check_role_access()

Task

- permissions

- check_task_access()

Team

- roles

- tasks

- check_team_access()

Permission

- object

- operation

- check_permission()

Object

- name

- check_object()

Operation

- name

- check_operation()

 
Figure 5: Structure of TT-RBAC decision maker 

 

In order to accelerate the speed of creating user decision makers, some or all the role, team, task, permission, 

object and operation objects can be initialized and saved in some object containers when a TT-RBAC evaluation 

system starts up.  

When an authorization request arrives, the evaluation system creates a special user decision maker according 

to the request user object, and then checks if this user can perform the required permission (ob, op) that is formed by 

the request object (ob) and request operation (op). The whole authorization check process is shown in Figure 6 and 

described as follows: 

 

check_user_access(ob,op)

check_role_access(ob,op)

check_team_access(ob,op)

check_task_access(ob,op)

check_permission(ob,op)

check_role_access(ob,op)

check_permission(ob,op)

check_object(ob)

check_operation(op)

USER

ROLES

TEAMS TASKS

PERMISSSIONS

OBJECTS

OPERATIONS

 
Figure 6: TT-RBAC authorization check process 

 

̶ check_user_access is a method defined in User class. It checks if a request is permitted by a user object (user 

decision maker). This method first checks the state of the user object. Only when it is in active state, the check 

process continues to do the role permission check and team permission check, otherwise the check process 

stops and returns the value “false”. The role permission check is through invoking the method 

check_role_access defined in role objects. The team permission check is through invoking the method 

check_team_access defined in team objects. If there is any role or team permits this permission, the check 

process stops and returns the value “true”; 

̶ check_role_access is a method defined in Role class. It checks if a request is permitted by a role object. This 

method first checks the state of the role object. Only when it is in active state, the check process continues to 

do the role permission check, otherwise the check process stops and returns the value “false”. The role 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4669 

 

 

permission check is through invoking the method check_permission defined in permission objects. If the 

request is permitted by the role, it returns the value “true”; 

̶ check_team_access is a method defined in Team class. It checks if a request is permitted by both team-roles 

and team-tasks. This method first checks the state of the team object. Only when it is in active state, the check 

process continues to do the team-role and team-task permission checks, otherwise the check process stops and 

returns the value “false”. The team-task permission check is through invoking the method check_task_access 

defined in task objects. If the request is permitted by both the team-roles and team-tasks, it returns the value 

“true”; 

̶ check_task_access is a method defined in Task class. It checks if a request is permitted by a task. The check 

process is similar to check_role_access; 

̶ check_permission is a method defined in Permission class. It checks if a request is permitted by a permission 

object. This method first checks the state of the permission object. Only when it is in active state, the check 

process continues to do the permission check, otherwise the check process stops and returns the value “false”. 

The permission check is through invoking the methodcheck_object defined in (permission) object, and the 

method check_operation defined in operation object. Only when both of them return the value “true”, this 

method returns the value “true”, otherwise returns the value “false”; 

̶ check_object is a method defined in Object class. It checks if the input request object is equal to a (permission) 

object. This method first checks the state of the object. Only when it is in active state, the check process 

continues to do the object comparison, otherwise the check process stops and returns the value “false”. The 

object comparison is through comparing two objects’ names. If their names are equal, this method returns the 

value “true”, otherwise returns the value “false”; 

check_operation is a method defined in Operation class. It checks if the input request operation is equal to an  

Operation object. The check process is similar to the check process of check_object.  

 

IV. DEVELOPING SOFTWARE MODULE OF TT-RBAC 

To install the program, you need to select the setup.exe application shown in Figure 7.

 
Figure 7. Selecting a file 

 

After downloading the application, the following window will be displayed: 

 
Figure 8. Installing the application 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4670 

 

 

You need to click on the "Install" button and the program will start.The program consists of two parts. The 

first one is defining user rights by choosing users and the second one based on current user. Defining user rights by 

choosing users is below: 

 
Figure 9: Defining user rights by choosing users 

 

In this part of program defining users rights has been given by choosing users through file which has been 

shown [5]. Also It can be checked user rights that had been defined through the current file. In the below, the process of 

defining user rights through file which has been shown:  

 
Figure 10: The process of defining user rights through file 

 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4671 

 

 

In the below, the checking process of defining user rights that had been remarked through the current file: 

 
Figure 11: The checking process of defining user rights 

 

The second part of the program consists of the two windows. In the first window, defining rights for file was 

located. In the second window, defining rights for folder was located. Access control for file is shown below: 

 

 

Figure 12: Access control for file 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4672 

 

 

 

V. RESULT 

 

After the program is distributed to the file "C: \ Users \ admin \ Desktop \ MMK.docx" using the program, the 

following error occurs when starting the MS Word document: 

 
Figure 13. Error reference. 

 

The program is designed to control the mark of the rights of users of the system, control permission for users 

of the system and control when the access rights are marked. 

The program performs the following functions: marking the rights of users relative to the file, viewing a 

specific file when marking the rights of an existing user, marking the rights of users relative to the folder object. 

Through the program, the organization of effective management of the rights of users of the system by 

marking, as well as preventing the use of data by users who do not have permission to access, is carried out. 

The program introduced a mechanism for adding context constraints to any TT-RBAC objects. This access 

control model was motivated by the need to reduce time and raise the level for security administration. 

 
VI. CONCLUSION  

 

From this article it can be used as information resource that defining information, projecting users rights for 

resources, managing and controlling users. 

A practical significance characterized by the fact that this requires access control models, policies, and 

enforcement mechanisms for collaboration resources. This article reviewed several research issues in this area. They 

are listed as follows:  

̶ access control model that caters the requirements for access control in collaborative environments; 

̶ authorization constraints that could be used for both expressing and enforcing authorization constraints; 

̶ how to enhance and simplify the access control policies used in collaborative environments; 

̶ policy and mechanism used for managing and enforcing multiple heterogeneous authorization policies in 

distributed authorization environments.  

 

REFERENCES  
 

[1] W.Tolone, G.Ahn, T.Pai, and S.Hong. Access control in collaborative systems. ACM Computing Surveys, 37(1):29–41, March 2009. 

[2] W.Zhou, C.Meinel. Team and Task Based RBAC Access Control Model. In Proceedings of the 5th Latin American Network Operations and 

Management Symposium (LANOMS 2010), pp. 84-94, Petrópolis, Brazil, September 2010. 

[3]Zhou W. Access control model and policies for collaborative environments :дис. – University of Potsdam, 2008. 

[4] Rajaboevich G. S., Mirpulatovich K. M., Yakubdjanovich T. Z. The Methodology of the Ways for Increasing the Efficiency of Intrusion 

Detection Systems //International Journal of Engineering Innovations and Research. – 2016. – Т. 5. – №. 5. – С. 296. 
[5] Kadirov M.M. Access control model and policies for collaborative environments. International Journal of Advanced Research in Science, 

Engineering and Technology, Vol. 4, Issue 7, July 2017, p. 4223-4229. 

 
 

 

 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 4, Issue 10 , October 2017 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        4673 

 

 

AUTHOR’S BIOGRAPHY 
 

 

Kadirov Mirhusan Mirpulatovich Assistant professor. Has more than 78 published 

scientific works in the form of articles, journals, theses and tutorials. Currently 

works at the department of “Information technologies” in Tashkent State Technical 

University. 

 

 

 

Tulyaganov Zoxidjon Yakubdjanovich Assistant professor. Has more than 10 

published scientific works in the form of articles, journals, theses and tutorials. 

Currently works at the department of “Information technologies” in Tashkent State 

Technical University. 

 

 

 

http://www.ijarset.com/

