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ABSTRACT: Clustering has received a significant amount of attention as an important problem with many 

applications, and a number of different algorithms have emerged over the years. Recently, the use of Non-Negative 

Matrix Factorization (NMF) for partitional clustering has attracted much interest. However, the popularity of NMF has 

significantly increased the proposed multiplicative NMF algorithms which they applied to image data. At present, NMF 

and its variants have already found a wide spectrum of applications in several areas such as pattern recognition and 

feature extraction, dimensionality reduction, segmentation and clustering, text mining and neurobiology. Nonnegative 

Matrix Factorization (NMF) is a popular matrix decomposition method with various applications in e.g. machine 

learning, data mining, pattern recognition, and signal processing. The non negativity constraints have been shown to 

result in parts-based representation of the data, and such additive property can lead to the discovery of data’s hidden 

structures that have meaningful interpretations. 
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I.INTRODUCTION 

 

Clustering has received a significant amount of attention as an important problem with many applications, and 

a number of different algorithms have emerged over the years. Recently, the use of Non-Negative Matrix Factorization 

(NMF) for partitional clustering has attracted much interest. However, the popularity of NMF has significantly 

increased the proposed multiplicative NMF algorithms which they applied to image data. At present, NMF and its 

variants have already found a wide spectrum of applications in several areas such as pattern recognition and feature 

extraction, dimensionality reduction, segmentation and clustering, text mining and neurobiology. Nonnegative Matrix 

Factorization (NMF) is a popular matrix decomposition method with various applications in e.g. machine learning, data 

mining, pattern recognition, and signal processing. The non negativity constraints have been shown to result in parts-

based representation of the data, and such additive property can lead to the discovery of data’s hidden structures that 

have meaningful interpretations. 

 
A. NON-NEGATIVE MATRIX FACTOR 

 

In linear algebra, a Matrix Factorization (MF) is a decomposition of a matrix into a product of matrices. Let the 

input data matrix  𝑋 =  𝑥1 , … . 𝑥𝑛  contain n data vectors of dimensionality m, 𝑊 =  𝑤1 , … . 𝑤𝑟 , and 𝐻 =  𝑕1 , … . 𝑕𝑛 . 

To factorize matrix X into the product of matrices W and H, one can write: 

𝑋 = 𝑊𝐻    (1) 

In conventional MF, both the input matrix X and the factorized matrices Wand H can contain either positive or negative 

entries. The idea of Nonnegative Matrix Factorization (NMF) in which they introduced a factor analysis method called 

Positive Matrix Factorization (PMF). Given an observed positive data matrix X, PMF solves the following weighted 

factorization problem with nonnegativity constraints: 

𝑚𝑖𝑛𝑊≥0,𝐻≥0 𝐴⨀ 𝑋 − 𝑊𝐻  𝐹      (2) 
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where ⋅ 𝐹denotes Frobenius norm, ⨀ denotes Hadamard (element-wise) product, A is the weighting matrix, and W, H 

are factor matrices that are constrained to be nonnegative. 

NMF attract more research attentions and gain more applications in various fields. Given a nonnegative input 

data matrix 𝑋 ∈ ℝ+
𝑚×𝑛 , NMF finds two nonnegative 𝑊 ∈ ℝ+

𝑚×𝑟and 𝐻 ∈ ℝ+
𝑟×𝑛such that 

𝑋 ≈ 𝑊𝐻   (3) 

The rank r is often chosen so that 𝑟 < min 𝑚, 𝑛 , An appropriate selection of the value r is critical in practice, 

but its choice is usually problem dependent. Let us write 𝑋𝑖 ≈ 𝑊𝑕𝑖 =  𝑤𝑘 ∙ 𝑕𝑘𝑖
𝑟
𝑘=1 . One can see that NMF 

approximates each nonnegative input data vector in X by an additive linear combination of r nonnegative basis columns 

in W, with nonnegative coefficients in the corresponding column in H. Therefore, the matrix factor W is usually 

regarded as the basis matrix, the factor H as the coefficient matrix, and the product term WH is called the compressed 

version of the X or the approximating matrix of X. The additive nature of NMF can often generate parts-based data 

representation that conveys physical meanings. 

 
II CLUSTERING 

 

Clustering is a combinatorial problem whose aim is to find the cluster assignment of data that optimizes 

certain objective. The aim of clustering is to group a set of objects in such a way that the objects in the same cluster are 

more similar to each other than to the objects in other clusters, according to a particular objective. Clustering belongs to 

the unsupervised learning scope that involves unlabeled data only, which makes it a more difficult and challenging 

problem than classification because no labeled data or ground truth can be used for training. Cluster analysis is 

prevalent in many scientific fields with a variety of applications. For example, image segmentation, an important 

research area of computer vision, can be formulated as a clustering problem.  

 

A. PRINCIPAL COMPONENT ANALYSIS AND NON-NEGATIVE DATA 

 

There has been published several papers where NMF outperforms PCA. Analyze the outcome of Principal 

Component Analysis (PCA) when the observation is nonnegative. This analysis shows that PCA will output only one 

purely positive component and the remaining components will contain both positive and negative elements.  

In PCA a set of vectors 𝑣1 , … . 𝑣𝑚 ∈ ℝ𝑛 is projected to a r-dimensional space such that most variance is 

obtained. In other words, PCA finds a matrix 𝑃𝑃𝐶𝐴 ∈ ℝ𝑟×𝑛with orthonormal row vectors that fulfils 

𝑃𝑃𝐶𝐴 = arg 𝑚𝑎𝑥𝑃∈ℝ𝑟×𝑛  𝑃𝑉 𝐹
2      (4) 

Note, there are many solutions to the maximization problem. Therefore, argmax means that 𝑃𝑃𝐶𝐴  is just one of the 

optimal matrices. 

 

B. EVALUATION MEASURES 

 

Effective evaluation measures are crucial for quantifying and comparing the performance of clustering 

methods. Generally, there are three different categories of evaluation criteria: internal, relative, and external. Internal 

criteria examine the resulting clusters directly from the original input data. Relative criteria compare several clustering 

structures, which can be produced by different algorithms, and decide which one may best characterize the data to 

certain extent. External criteria have been commonly used; they measure the clustering performance by using the 

known information (often referred to as ground truth). Two widely used external criteria are  

 Purity, defined as 

𝑝𝑢𝑟𝑖𝑡𝑦 =
1

2
 𝑚𝑎𝑥1≤𝑙≤𝑞

𝑟

𝑘=1

𝑛𝑘
𝑙      (4) 

where 𝑛𝑘
𝑙  is the number of vertices in the partition k that belong to the ground-truth class l. Purity is easy to understand, 

as it can be interpreted in a similar way as the classification accuracy in supervised learning. However, purity has a 

drawback in that it tends to emphasize the large clusters. 

 Normalized Mutual Information, defined as 

𝑁𝑀𝐼 =

  𝑛𝑖 ,𝑗  𝑙𝑜𝑔  
𝑛𝑖 ,𝑛𝑗

𝑛𝑖𝑚𝑗
 𝑘 ′

𝑗=1
𝐾
𝑖=1

  𝑛𝑖   𝑙𝑜𝑔  
𝑛𝑖

𝑛
  𝑚𝑗 log  

𝑚𝑗

𝑛
 𝐾 ′

𝑗 =1
𝐾
𝑖=1

     (5) 
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where K and 𝐾 ′  respectively denote the number of clusters and classes; 𝑛𝑖 ,,𝑗  is the number of data points 

agreed by cluster i and class j; 𝑛𝑖 , and 𝑚𝑖 , denote the number of data points in cluster i and class j respectively; and n is 

the total number of data points in the dataset. NMI examines the quality of clusters from an information-theoretic 

perspective. Compared with purity, NMI tends to be less affected by the cluster sizes due to the normalization step 

given by its denominator, but it is not that intuitive as purity for people to interpret. 

 

III. SIGNIFICANCE OF THE SYSTEM 

 

The concept of matrix factorization is used in a wide range of important applications and each matrix factorization 

relies on an assumption about its components and its underlying structures, it is an essential process in each application 

domain. Very often, the data sets to be analyzed are non-negative, and sometimes they also have a sparse representation. 

The spectral clustering, normalized cuts, and Kernel k-means are particular cases of clustering with NMF under a 

doubly stochastic constraint. They also considered the symmetric matrix decomposition under non-negativity 

constraints similar to those formulated. 

IV. LITERATURE SURVEY 

 

The propose system to improve the multi-view point algorithm in two actual ways. First, the current PVC 

algorithm is considered specifically for two-view datasets. We extend this algorithm for the k multi-view point. Second, 

extend our k multiple-view algorithm to include view-specific graph laplacian regularization. This enables the proposed 

algorithm to exploit the intrinsic geometry of the data distribution in each view. The compare propose method against 

existing clustering algorithm on both text and image datasets. The baseline methods and datasets used in this method 

are more exhaustive than what is used in the PVC work. The experiments show that the proposed GPMVC method 

outperforms PVC and other competitive baseline methods on all the different datasets. It also provides insights into 

how our algorithm performs when there is a skew in the distribution of partial examples across views. 

 

A. NON-NEGATIVE MATRIX FACTORIZATION 

 

NMF with the sum of formed error cost meaning is equal to a comfortable K-means clustering, the most this 

algorithm used for unsupervised dataset learning. The NMF with the I-divergence cost function is matched into 

probabilistic latent semantic indexing analysis, unsupervised learning method mostly used for text analysis. Many 

existing data mining and machine learning algorithm can be used to solve the NMF problem. 

Here consider the input data row and column matrix denoted by 𝑋 =  𝑋1, 𝑋2, …𝑋𝑛 contain the n no ofdata column 

vectors. factorizeX into two matrices, 

𝑋 ≈ 𝐹𝐺𝑇     (1) 
 

where𝑋 ∈ ℝ𝑝×𝑛  , 𝐹 ∈ ℝ𝑝×𝑘    and 𝐺 ∈ ℝ𝑛×𝑘    . Generally, 𝑝 < 𝑛 and the rank of matricesF,Gis much lower than the rank 

of X, i.e., k ≪min(p;n). F;Gare obtained by minimizing a cost function. The most common cost function is the sum of 

squared errors, 

𝑀𝑖𝑛𝐹,𝐺≥0𝐽𝑠𝑠𝑒 =  𝑋 − 𝐹𝐺𝑇 2    (2) 

the matrix norm is indirectly assumed to be the Frobenius norm. A rank non-deficiency disorder is assumed for F, G. 

the cost function is the so-called I-divergence: 

𝑀𝑖𝑛𝐹,𝐺≥0𝐽𝐼𝐷 =    𝑋𝑖𝑗 𝑙𝑜𝑔
𝑋𝑖𝑗

 𝐹𝐺𝑇 𝑖𝑗
− 𝑋𝑖𝑗 +  𝐹𝐺𝑇 𝑖𝑗       (3)

𝑛

𝑗 =1

𝑚

𝑖=1

 

It’s easy to show that the dissimilarity I(x) = x log x−x+1 ≥ 0 holds when x ≥ 0; the equivalence holds when x = 1. 

The quantity I(u;v) = (u=v) log(u=v)−u=v+1 is called I-divergence, 

 

NMF and K-means Clustering 

Here proposed K-means based clustering algorithm is one of the best clustering algorithm for high dimension dataset. 

Let consider X=  𝑋1 , 𝑋2, …𝑋𝑛  be n data points. The divider them into K equally disjoint clusters. The K-means 

clustering objective can be written as 

𝐽𝑘𝑚𝑒𝑎𝑛𝑠 =  𝑚𝑖𝑛1≤𝐾≤𝑘 𝑥𝑖 − 𝑓𝑘 
2 =    𝑥𝑖 − 𝑓𝑘 

2     (4)

𝑖∈𝑐𝑘

𝑘

𝑘=1

𝑛

𝑖=1
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The following theorem shows that NMF is inherently related to K-means clustering algorithm 

𝑚𝑖𝑛𝐹≥0,𝐺≥0 𝑋 − 𝐹𝐺𝑇 2   𝑠𝑡 𝐺𝑇𝐺 = 1    (5) 

is equivalent to K-means clustering. The k-means if X and F have mixed-sign accesses. appreciate this relationship 

in this similarity. Here c is the no of cluster to be consider the 𝐶 =  𝐶1 , 𝐶2, …𝐶𝑘 be the cluster centroids found via base 

cluster K-means clustering. Let H be the cluster indicators: i.e., 𝑕𝑘𝑖 = 1 if 𝑥𝑖belongs to cluster   𝑐𝑘 ; 𝑕𝑖𝑘 = 0 otherwise. 

We can write the K-means cluster objective as 𝐽 =   𝑕𝑖𝑘 𝑥𝑖 − 𝑐𝑘 
2 =  𝑋 − 𝐶𝐻𝑇 2𝐾

𝑘=1
𝑛
𝑖=1 From this analogy, in 

NMF F has the meaning of cluster centroids and G is the cluster indicator. Thus K-means and NMF have similar 

objective function but with different constraints. The originally K-means objective function can be expressed to ignore 

the nonnegativity constraint while keeping the orthogonality restriction, the principal component is the solution. On the 

other hand, if ignore the orthogonality while keeping the nonnegativity, NMF is the solution. 

 

B. MULTI-VIEW CLUSTERING 

 

The multi-view point clustering algorithm to analysis based on data point in multi views would be assigned to 

the same cluster with high likelihood. To apply this instinct in a NMF setting the coefficient matrices (𝑉𝑖) learnt from 

dissimilar views are softly regularized towards a common agreement matrix (𝑉∗). This agreement matrix is considered 

to reflect the latent structure shared by different views. The multi-point NMF clustering setup divergence between the 

ith coefficient matrix and agreement matrix i.e. k  𝑉𝑖 − 𝑉∗ is minimized. The 𝑉𝑖  from multi views might not be similar 

at the same scale one needs to adopt a normalization policy. Each coefficient matrix V is normalized using matrix Q 

(where, Q is a diagonal matrix, 𝑄𝑘 ,𝑘 =  𝑈𝑖 ,𝑘𝑖 . This gives us the following multi- view NMF-based clustering problem, 

𝑀𝑖𝑛𝑢𝑖 ,𝑉𝑖 ,𝑉∗    𝑋𝑖 − 𝑈𝑖𝑉𝑖
𝑇 𝐹

2  + 𝜇𝑖 𝑉𝑖𝑄𝑖 − 𝑉∗ 𝐹
2 

𝑣

𝑖=1

     (6) 

 

S.t 𝑈𝑖 ≥ 0 , 𝑉𝑖 ≥ 0 , ∀𝑖    𝑠, 𝑡 1 ≤ 𝑖 ≤ 𝑣 

 

This algorithm to learning a joint representation (𝑉∗) of the data totally ignores the intrinsic geometrical 

structure of each single view. The existing work shown that respecting the geometrical/low-dimensional manifold 

information can improve clustering quality. The propose system mainly consider multi-view pint in multi dimension 

datasets. 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐺𝑅 =
1

2
   𝑉𝑖 𝑗 −  𝑉𝑖 𝑙 

2
× 𝑊𝑗𝑙

𝑁𝑖

𝑗 ,𝑙=1

 

= 𝑇𝑟 𝑉𝑖
𝑇𝐷𝑖𝑉𝑖 − 𝑇𝑟 𝑉𝑖

𝑇𝑊𝑖𝑉𝑖  

= 𝑇𝑟 𝑉𝑖
𝑇𝐿𝑖𝑉𝑖         (7) 

To enable this, introduce an added graph regularization penalty. Given a similarity matrix 𝑊2one can define a 

smoothness consequence. 

 

V. METHODOLOGY 

A. DATASET 

 ORL: This is image dataset contains a set of 400 face images. Here concept two views one based on raw pixel 

values and the other comprising of HOG features. 

 3Sources: This three-view text dataset is collected from three online news sources. In total there are 948 news 

articles covering 416 distinct news stories. Of these stories, 169 were reported in all three sources. For our 

multi-view experiments the dataset containing 169 articles was used. 

 BBC Sports: This text dataset is a collection of sports news articles from the BBC Sport web site. For our 

Multiview experiments choose the 3-view dataset which containing 282 reports. 

 Digit: This image dataset is from the UCI repository and consists of 2000 hand-written digits (0-9). This is a 

5-view dataset. Similar to two-view experiments it considers the following two views: 216 profile correlations, 

240-pixel averages in 2 x 3 windows. 

 Cora: This dataset consists of 2708 scientific publications. It considers the following two views for 

experiments: number of citations between documents and the term-document matrix. 
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B. PERFORMANCE EVALUATION 

 

 To measure the clustering performance of the proposed algorithms we use the commonly adopted metrics, the 

accuracy, the Normalized Mutual Information and the Adjusted Rand Index. The clustering accuracy noted 

(Acc) discovers the one-to-one relationship between two partitions and measures the extent to which each 

cluster contains data points from the corresponding class. It is defined as follows: 

 𝐴𝑐𝑐 =
1

𝑛
 𝛿𝑛

𝑖=1 (𝐶𝑖 , 𝑚𝑎𝑝 𝒫𝑖     (13) 

 where n is the total number of samples, Pi is the ith obtained cluster and Ci is the true ith class provided by the 

data set.  (x; y) is the delta function that equals one if x = y and equals zero otherwise, and map(Pi) is the 

permutation mapping function that maps the obtained label Pi to the equivalent label from the data set.  

 The second measure employed is the Normalized Mutual Information (NMI); it is estimated by 

 𝑁𝑀𝐼 =
 

𝑛𝑘𝑙

𝑛
   𝑙𝑜𝑔𝑘 ,𝑙

𝑛𝑛𝑘𝑙

𝑛𝑘𝑛𝑙

  𝑛𝑘 log
𝑛𝑘
𝑛

  𝑛𝑙 log
𝑛𝑙
𝑛𝑙  𝑘

     (14) 

 where𝑛𝑘  denotes the number of data contained in cluster 𝐶𝑘 1 ≤ 𝑘 ≤ 𝐾 , 𝑛𝑙  is the number of data belonging 

to the class 𝐿𝑙 1 ≤ 𝑙 ≤ 𝐾 and 𝑛𝑘𝑙  denotes the number of data that are in the intersection between cluster 

𝐶𝑘and class 𝐿𝑙 . 

 

C. COMPARISON GRAPHS 

Table 4.1: Average computation time vs different algorithms 

Datasets Semi-NMF- PCA F-Semi-NMF- 

PCA 

RF-Semi-NMF 

PCA 

NMF- multi-view 

graph clustering 

Coil 1293 1047 1323 967 

Orl 1696 1,584 1,718 1232 

Webkb 1430 1235 1549 1104 

     

 
Figure 4.1 Comparison of run time Vs different datasets 

Table 4.2 Results obtained by the compared methods on different data sets in terms Acc, NMI and ARI. 
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Figure 4.2 Results obtained by the compared methods on Coil data sets in terms Acc, NMI and ARI. 

 

 
Figure 4.3 Results obtained by the compared methods on Orl data sets in terms Acc, NMI and ARI. 

                                         
Figure 4.4 Results obtained by the compared methods on Webkb data sets in terms Acc, NMI and ARI 
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D. SCREENSHOTS 
 

Coil Dataset 

 
 

 

 

 

 

Oral Dataset 
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VI. CONCLUSION AND FUTURE WORK 

 

The proposed Multi View Clustering (MVC) algorithm is shown to be effective in states with incomplete or 

missing information in the high dimension dataset. The propose system to improve the MVC algorithm to support 

multi-views and view-specific based graph Laplacian regularization. The MVC algorithm is considered specifically for 

two-view datasets. The first view k-multi-view dimension. The second view k multiple-view algorithm to include view-

specific graph Laplacian regularization. The propose algorithm to activity the inherent geometry of the data distribution 

in each view. The experiments show that the propose multi-view graph clustering (MVGC) algorithm outperforms 

MVC and other competitive baseline clustering method methods on all the different datasets. 

 

FUTURE WORK 

  

The future work observations show that our algorithm is a good candidate to apply it to image segmentation and text 

dataset, that will be next task. The applyspectral clustering algorithms using statistical alarm method. The alarm bound 

discloses that the clustering rate is closely related to the amount of data alarm one can make the clustering rate small by 

reducing the amount of alarm. The future work shows the that clustering rate converges to zero as the number of 

representative points produces. These results provide a theoretical foundation for algorithms and also have potentially 

wider applicability. In particular, a natural direction to pursue in future work is the use of other local data reduction 

methods (e.g., data squashing and condensation methods) for pre-processing; this bound can be extended to these 

methods. The future plan to explore other methods for assigning clustering membership to the original data according 

to the membership of the representative data based on local optimization and edge-swapping methods. 
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