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ABSTRACT: In the paper a problem of double relaxing solute transport in a porous medium is considered. On the 

basis of mass balance equation and the double relaxing Fick’s law a solute transport equation is derived. The equation 

is numerically solved and the influence of the relaxation parameters on solute transport characteristics is established. 

 

KEYWORDS: Filtration; mathematical model; porous media; relaxation; suspension; solute transport; 

 

I. INTRODUCTION 

 

In recent times the intensity of studies of anomalous phenomena at diffusion and dispersion of particles in porous 

media has significantly increased. One of the original works, where violation of classical Fickian diffusion law was 

indicated is [1].  In [1] the mass solute flow is given by a sum two members - the classic Fick’s diffusion and relaxation 

term. At the transport of solute or other suspended fine particles in porous media breakthrough curves can be non-

Gaussian with considerable tailing effect [2, 3, 4]. A Non-Fickian generalized theory dispersion is proposed in [5]. A 

general equation, from which equations containing different derivatives of the mass dispersion flow with respect to 

time can be obtained in particular cases, was derived and stochastic models described by integrodifferential equation in 

which the dispersion tensor increases asymptotically with time and as a function of the space coordinate, were proposed. 

 

In [6] it is found that low-concentration-gradient experiments can be simulated satisfactorily using the Fickian-type 

dispersion equation. However, calculated breakthrough curves for high-concentration-gradient experiments deviate 

substantially from the measured curves. It appears that a satisfactory fit to high-concentration-gradient data can be 

obtained only if the value of longitudinal dispersivity is reduced by a factor of three. Using the non-linear theory, 

however, it is possible to simulate both low- and high-concentration-gradient experiments with a unique set of 

parameter values. Fick’s law expresses the proportionality of solute flux with respect to concentration gradient. Similar 

relations are given by Darcy’s law for the fluid flow in porous media[7]. In [8] with using an inertial Fick`s law 

hyperbolic solute transport equation is derived. It was shown that  such a hyperbolic description is valid, but for 

transient solute flows with very short characteristic times. 

 

In [9] the problem of the macroscopic simulation of the motion of a viscous fluid and mass transport in a porous 

medium is considered under the assumption that the mass transport can locally be described by the Fick relaxation law. 

Several cases determined by the local inertia number of the mass flow and the Pēclet number are investigated. The 

macroscopic transport models are analyzed and compared with well-known phenomenological models.  

 

It is well known that the flow of aqueous polymeric fluids through porous media plays important role in enhanced oil 

recovery processes [10].   We can note [11] that  the in situ rheology of the fluid does not explicitly depend upon the 

bulk rheology of the aqueous polymer solution. For polymeric solutions, the apparent viscosity is a function of flow 

rate through the porous medium and flow rate may be interrelated with the fluid memory in the pore network [12].  

 

Formation of tailing in breakthrough curves, i.e. non-Gaussian concentration profiles investigated also in [2, 3] that 

explicitly demonstrates the violation of classical Fick`s law. Statistical approach to model anomalous dispersion in 

porous media is used in [13, 14]. Models are presented by integrodifferential equations  in which the dispersion tensor 

is asymptotically  increases with time and is  a function of the space coordinate. 
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Some hypotetic filtration laws for homogeneous liquids in  porous media, that take into account the relaxation of the 

pressure gradient and the velocity of filtration are given in [15,16]. On the basis of these models non-steady filtration 

equations are derived that makes enable to determine pressure distribution and other filtration characteristics. In this 

paper principal model approaches and methodology used in these works for filtration processes we attempt to adapt for 

solute transport problems. First, for double-relaxation Fick`s law that includes both the relaxation of solute mass flow 

and concentration gradient, we derive a solute transport equation and pose an initial-boundary problem. Then we 

numerically solve the problem. Next we present some results and their short analysis.  

 

II. DERIVATION OF TRANSPORT EQUATION AND FORMULATION OF THE PROBLEM 

 

The mass balance of the solute in the one-dimensional case is expressed by the equation    
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where  m – the porosity of the medium, c – the concentration of solute dissolved in the filtrated liquid , F – the total 

solute mass flow, consisting of the convection (Fc) and diffusion (Fd) flows, ,dc FFF   t – time, x – space coordinate.   

 

Convective flow has the following form [7] 

 vmccvF fc  ,      (2) 

where fv
 
– filtration velocity, v – the physical fluid velocity. 

 

The diffusion law with double-relaxation we write as 
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where 21,  – the relaxation times, D – diffusion coefficient, which we take as a constant. 

 

In more general form instead of diffusion coefficient one can use dispersion coefficient that depends on filtration 

velocity distribution [7]. 

 

Equation (1), taking into account (2), (3) becomes 
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Differentiating (3) with respect x, we have 
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From (4) and (5) we obtain 
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  (6) 

 

In order to assess the relaxation effects on the solute transport characteristics we pose the following simple problem. 

Let in the semi infinite porous medium initially filled with pure (without solut) fluid since 0t  inflows liquid with 

constant concentration of solute .0c   

 

Then the initial and boundary conditions take the from 
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III. NUMERICAL SOLUTION OF THE PROBLEM 

 

To solve the problem (6) - (8) we apply the method of finite differences [17]. In the area  0,0),,(  xTtxt  we 

introduce the following grid  
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where h,  - steps with respect t and x, respectively. Numerical solution for the concentration on the grid h  we denote 

as ,j

ic  and solute diffusion flow rate dF  as .j

iF   

 

We approximate equation (6), using the implicit finite difference scheme on the grid  h  in the form  
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The initial and boundary conditions (7), (8) are approximated as  
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Finite difference scheme (8) leads to the system of linear algebraic equations   
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I – enough large integer. 

 

The system of equations (11) we solve by the Tomas’ algorithm [17].  

 

In accordance with (3) we define the solute flow rate. With   0,0 xFd  we have  
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The  xtFd ,  can be determined by calculating the integral (13) at the known concentration distribution  xtc ,  .  

 

We can also directly discretizaze equation (5) on the grid.   
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So, equation (3) is approximated as 
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Since 1
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, the finite difference scheme (14) is stable. At known 1
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i  At the lowest grid layer 0j  we have .,...2,1,00  iFi    

 

IV. RESULTS 

 

In the calculations the following initial values of parameters are used:  01,00 c , 3,0m   and the various 

21,,, Dv . Some results of numerical calculations are shown in Fig. 1 - 4. With the increasing of  1  at given 2  the development of 

concentration profiles is delayed. It can be seen from the figures that in the transition period, the duration of which is determined by the 

relaxation times, the concentration profiles lag behind the corresponding profiles without taking into account the relaxation. With increasing 

of 2  at the given  1  the development of concentration profiles intensifies (Fig.2). In this case also at large times we 

can observe the weakening of relaxation phenomena. Comparison of two cases shows that influences of 1  and 2 on 

concentration profiles are quite opposite. Joint influences of two relaxation parameters on solute transport 

characteristics are determined by dominant values of  1  and 2 . Influence of relaxation parameters on diffusion mass 

flux rate dF  also is studied. Dynamics of dF  at different points  x  and for different values of relaxation times is 

shown in Fig. 3, 4. Results indicate non-monotonous dependences of dF  at given points. The character of relaxation 

parameters influences on dF  is same as for concentrations. We can see decreasing dynamics of dF  for large times. It 

occurs due to decreasing of concentration gradients for large times at a given points of the area. On the basis of 

presented results we can conclude that the relaxation character of diffusion law considerably alters all solute transport 

characteristics.  
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Figure 1. Profiles  of с  at  ,sm10 5v ,sm10 26D    ,s10002   а) s;3600t   b) s;10000t  c) s;20000t  

 s. 

a) c 

x,m 

b) c 

x,m 

c) c 

x,m 

Figure 2. Profiles of с  at ,sm10 5v ,sm10 26D s,10001   а) s;3600t   b) s;10000t  c) s;20000t  

  s. 

x,m 

c) c 
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Figure 3. Dynamics  of dF  at  s,10002    ,sm10 5v ,sm10 26D  0x  (а);  0,1m (b);  0,2m (c); 

s.)3(3000),2(1000),1(01      

 

sm,108dF
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a) b) 
sm,108dF
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c) sm,108dF

s,t10 4 

а) sm,108dF

s,t10 4 

b) sm,108dF

s,t10 4 
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V. CONCLUSION 

 

In this paper a solute transport equation for double-relaxation solute diffusion law is derived. Solute diffusion law takes 

into account both the relaxation of the diffusion solute flux and concentration gradient. An initial-boundary problem for 

this equation is posed and numerically solved. On the basis of numerical solutions the influence of relaxation times on 

solute transport characteristics is studied. It was shown that the relaxation of the solute diffusion mass, ,1  leads to 

delaying of transport characteristics, while the relaxation of solute concentration gradients, ,2  leads to the advance 

distribution of transport characteristics. So, influences of 1  and 2  on solute transport characteristics are quite 

opposite. All obtained results show that relaxation behaviour of the diffusion law considerably alters all solute transport 

characteristics.    

 

REFERENCES 

 
[1]. Stract O.D.L., A mathematical model for dispersion with a moving front in groundwater // Water Resours. Res., 28(11), 2973-2980, 1992. 

[2]. Bacri. J.-C., Bouchaud J.P., Georges A., Guyon E., Hulen J.P., Rakotomatala N. and Salin D. “Transient non-Gaussian trace dispersion in 
porous media,” in: Hulen J.P. et al. (Eds). Hydrodynamics of Dispersed Media. Elsevier. Amsterdam 1990. 249 p. 

[3]. Brady J.F. “Dispersion in heterogeneous media,” in: Hulen J.P. et al. (Eds.). Hydrodynamics of Dispersed Media. Elsevier. Amsterdam 

1990. 271 p. 
[4]. Matheron G. and de Marsily G. “Is transport in porous media always diffusive? A counterexample.” Water Resours. Res. 16. 1980. 901 p.  

[5]. Hassanizadeh S.M. On the transient non-Fickian dispersion theory // Transport in Porous Media. 23(1). 107-124. 1996. 

[6]. Hassanizadeh S.M., A. Leijnse. A non-linear theory high-concentration-gradient dispersion in porous media // Advances in Water 
Resources. 18(4). 203-215. 1995. 

[7]. Bear J. Dynamic of fluids in porous media. Dover, New York. 1972. 

[8]. Auriault J.-L., Lewandowska J., Royer P. On non-fickian hyperbolic diffusion. Studia Geotechnica et Mechanica, Vol. XXX, No. 1–2, 
2008. 139-146. 

[9]. Khuzhayorov B.Kh. Macrascopic Simulation of Relaxation Mass Transport in a Porous Medium. Fluid Dynamics, Vol. 39. No. 5. 2004. 
693-701 pp. 

[10]. Chen Zh., Huan G., Ma Y. Computation Methods for Multiphase Flows in Porous Media. Society for Industrial and Applied Mathematics 

– SIAM. Philadelphia. 2006. 
[11]. Khuzhayorov B. Filtration of non-homogeneous liquids in porous media. Tashkent, “FAN” Publisher. 2012. -258 p. 

[12]. Hossain M.E., L. Liu. M. Rafiqul Islam. Inclusion of the Memory Function in Describing the Flow of Shear-Thinning Fluids in Porous 

Media. International Journal of Engineering (IJE), Vol.3.  Issue 5. 2009. 458-477pp. 

Figure 4. Dynamics of dF  at  s,10001    ,sm10 5v ,sm10 26D  0x  (а);  0,1m (b);  0,2m (c); 

s.)3(3000),2(1000),1(02      

 

c) sm,108dF

s,t10 4 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 5, Issue 1 , January 2018 

 

Copyright to IJARSET                                                           www.ijarset.com                                                                        5101 

 

 

[13]. Cushman J.H. and Ginn T.R. Non-local dispersion in media with continuously evolving scales of heterogeneity, Transp. Porous Media. 13. 
1993. -123 p. 

[14]. Cushman J.H., Hu B.H. and Ginn T. R. Nonequilibrium statistical mechanics of preasymptotic dispersion. J. Stat. Phys. 75. 1994. -859 p. 

[15]. Molocovich Ju.M. Relaxation filtration. Kazan. KSU Publisher. 1980. – 136 p.  
[16]. Akilov J.A. Non-steady flow of viscoelastic liquids. Tashkent: “FAN” Publisher. 1982. – 104 p. 

[17]. Aziz Kh., Settary A. Petroleum Reservoir Simulation. Applied Science Publisher LTD. 1979. 250 p. 

 

http://www.ijarset.com/

