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ABSTRACT: In this paper, controllability of a class of new composite fractional nonlinear dynamical systems is 

investigated. Weaker sufficient conditions of controllability for the composite fractional nonlinear dynamical systems 

are presented. A numerical example is also given to illustrate the main results. 
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I. INTRODUCTION 

 

Controllability is one of the most important properties in mathematical control theory, see [1]-[2]. It means that the 

dynamical systems can be steered from an arbitrary initial state to an arbitrary final state within a limited time by 

admissible control functions. Venkatesan Govindaraj et al. [1] consider the following composite fractional equation 

.0,10,)0(),()()()( 0  txxtftxtxDatx C 
(1.1) 

The fractional equation (1.1) with order 2/1  corresponds to a basic problem in fluid dynamics called the Basset 

problem. So in [1], the authors choose the order value of 21/α , and the controllability conditions for linear and 

nonlinear systems are obtained based on the assumptions that the linear systems is controllable. Recently,  more and 

more research is being done on the controllability of fractional dynamical systems by using Grammian matrix, iterative 

technique and fixed point techniques, see for example, Venkatesan Govindaraj et al.[1], Krishnan Balachandran et 

al.[2]. The controllability of fractional dynamical systems is one of the most important topics in many problems 

because the use of fractional derivatives leads to better results that an integer one, see [3]-[6]. The research of the 

controllability of  various types of fractional systems is based on proving the existence of corresponding fractional 

differential equations, see [3]-[10]. The main difficulty arising in the control problem for nonlinear fractional 

dynamical systems is the lack of general methods. Venkatesan Govindaraj et al.[1] established sufficient conditions of 

controllability of the following nonlinear fractional composite dynamical systems 
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Inspired by the above literature, in this paper, consider a more generalized form of a class of composite fractional 

nonlinear dynamical systems 
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The controllability of  nonlinear composite fractional dynamical systems (1.3) is established. The main goal of this 

paper is to compute a control state that drives the system from a prescribed initial state to a described final state in a 

limited time. The sufficient conditions of this paper is weaker than the previous work, and  an numerical example is 

provided to illustrate the main results. 

 
II. PRELIMINARIES 

 

This section introduces definitions and preliminaries on fractional calculus. For more details, one can refer to the cited 

literature and its references. 

Definition 2.1 The Caputo fractional derivative of order C with nαn- 1 , Nn , for a suitable function f  is 

defined as 
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Definition 2.2 Complex parameters , C , the Mittag-Leffler function is defined by 
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For an arbitrary square matrix A , the Mittag-Leffler matrix function is 
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Lemma 2.1 (see,[1])Linear composite fractional dynamical system 
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where K , 
nnA R , 

mnRB  , 
ntx R)( , and ),()( 2 mJLtu R . The solution of (2.5) is as defined as following 
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AKK 
  and 

2

42 AKK 
2γ , AK 42   is positive so that the inverse of matrix 1  and 

2  exists. 

Definition 2.3 The system (2.5) is controllable on J  if, for each vectors 0x ,
nRx 1 , there exists a control function 

),()( 2 mJLtu R  such that the solution (2.5) with initial state 0)0( xx   satisfies 1)( xTx  . 

 

Lemma 2.2(see,[1])The linear composite fractional system (2.5) is controllable on J iffGramianmatix 

dssTNBBsTNW
T

)()( **

0
   

is positive definite for 0T , where )]()([)()( 22/1,2/112/1,2/1

1

21 tEtEtN   
. 

 

III. MAIN RESULTS 

 

Consider nonlinear fractional composite fractional dynamical systems described by the following nonlinear fractional 

differential equations 
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where K , 
nnA R , 

mnRB  , 
ntx R)( , and ),()( 2 mJLtu R . 

nnnJf RRR : is continuous functions. 

Operator S  is defined as following 

dssxsthtSx
t

 0
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where ),(),(  RJJCsth , and 00   ),(max ),( sthh JJst . 
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Let ),()({ nJCtxX R and )},()(2/1 nC JCtxD R  be a Banach space endowed with the norm 

|)(|max|)(|max|||| 2/1 txDtxx C

JtJt   . 

In order  to obtain the main results, make the following conditions 

(H1) There exists a positive M  such that 

MtSxtxtf ||)))((),(,(|| , Jt , 
nx R  

(H2)  For 
n

R 2121 ,,,  , there exist two continuous functions )(t  and )(t  on J  such that 
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Define )(max0 tJt   , )(max tJt ψψ 0 . 

For simplicity, Let 

||t)WN*(TBt)||(Tn *

Jt

12

1

1




max  

||||||)]()([)(||max //

/

),(
BstEstEstn

JJst



12122211

21

2 γγγγ  

||N|| )()(max / sTsTq
Js

 



21
 

Theorem 3.1 Suppose that f  satisfied conditions (H1) and (H2), and linear systems (2.5) is controllable, then the 

nonlinear fractional composite fractional dynamical systems (3.1) is controllable on J . 

 

Proof: Defined the following functions 
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It is clear that 
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Since   
t

nnnn dssxsxhtSxtSx
0 101 ||)()(||||))(()()(|| , it is easy to obtain that 

  
t
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Then 
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By mathematical induction, we have 
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Obviously, series 
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are convergent. From weierstrass 

discriminant method, Series (t)}{xn   is convergent and uniformly convergent on J . So the following equation can be 

regarded as the limit of (3.3) and (3.4), respectively. 
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Then )()( // txDtxD C

n

C 2121  , n . So (3.11) and (3.12) satisfies equation (3.1) and 1xTx )( , that is, systems 

(3.1) is controllable on J . 
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IV. NUMERICAL EXAMPLE 

 

In this section, we present an example to illustrate the main results obtained in section III. Consider the following 

composite nonlinear fractional composite dynamical system 
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withinitial conditions 
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It is obviously that nonlinear fractional composite system (4.1)  is one of special cases of (3.1), where  
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 After simple calculation, we can see that the Gramian matrix 
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Since 0||W , linear fractional composite dynamical system (2.5) is controllable on ],[ 10 . The control which steers 

the initial state 
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