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ABSTRACT: In spite of many years extensive research the transition to turbulence in pipes conveying fluids still 
remains ambiguous and needs further investigation. The purpose of this paper is to present the semi – empirical method 
for determination of universal criteria for transition to turbulence in industrial pipes based on few fundamental 
experiments backed by theoretical considerations. The investigation is presented in two parts. The first part, based on 
the well – known experimental data, is earmarked for simulation of reciprocal action of vortices with the fluid flow. The 
results outline the conditions for forming a turbulent velocity profile and relationship between the size of vortices, 
length between turbulent sparks and intermittency factor. The second part is aimed on consideration of vortex motions 
generated by Magnus force. The solutions of derived equation, graphically demonstrating the peculiarities of turbulent 
regime, such as vortex dynamics, intermittency and intrinsic mechanism of breakdown of the larger vortices into 
smaller ones, were presented for justification that the mathematical model is in compliance with well - known 
experimental results. The numerical analysis of mathematical model specified the universal laminar - turbulent numbers 
LT and critical Reynolds numbers for pipes with any diameter. 
 

        KEY WORDS: turbulence, transition, intermittency, vortices, velocity profile, drag, Magnus force. 
      Abbreviations: Re − Reynolds number, LT− critical number of transition to turbulence, F m – Magnus force,  

M a − Mach number.  
 

     I. INTRODUCTION 
 
The   initial   background   concerning   transition to turbulence  (TTT) in pipes conveying   fluid   was   created  by 
outstanding scientists long time ago.  The results of their investigations, mainly experimental, are available, in [1 – 3].  
Although the experimental results are informative, the theoretical modeling of turbulence and TTT was not successful 
until now.  The changeable properties of fluid in motion, the trajectories of vortices with stochastic component and many 
other factors hamper theoretical investigations. The reviews of research, related to turbulence in many decades, and 
direct numerical simulations of the Navier –Stokes equation [4 – 14] concluded that understanding of turbulence is still 
tentative and not complete. In spite of the singularity of turbulent flow the results of many years research established 
certain features of turbulent flow such as series of phases (receptive, intermittence and Kolmogorov’s microscale), 
dependences and numbers, introduced by O. Reynolds, L. Prandtl, W. Tollmien, H. Schlichting, Mach and many other 
scholars for numerical characteristics of turbulent flow. These determined numbers along with experimental results are 
clear indication that compound of a turbulent flow is the major determined bulk with concomitant, comparatively small 
stochastic constituent. The purpose of this paper is to introduce the universal numbers for TTT in industrial pipes based 
on the modeling of vortices motions amenable to mathematical analysis. It is well understood that turbulence is 
originated by motion of vortices. The established fact is also the disintegration of vortices moving downstream in 
intermittent phase. The mechanism of vortices disintegration is not known and likely unpredictable. By heuristic 
considerations, the disintegration of large vortices occurs as a result of vortices clash with piping walls, and this  attribute  
is  the indication  TTT and a cause  of increasing  intermittency  factor downstream  measured  by J. Rotta [1, p.152].  So, 
the swing of vortices equals piping diameter and the disintegration of vortices sizes are preconditions for determination 
of TTT with alteration in time between laminar or turbulent.  Only transversal trajectory of vortices was obtained and 
graphically demonstrated, since the vortex’s motion along a pipeis not important for determination of TTT. The proposed 
model incorporates the influence of Magnus force on vortex transverse to its velocity.  The data pertaining to the 
proposed model and governing equation are available, for example in [1], with all relevant references and in numerous 
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publications devoted to the vortex dynamics, particularly to the effect of the Magnus force. It can be assumed that in 
steady intermittent phase the turbulent mechanism is independent from disturbances at entrance to a pipe and standard 
roughness in industrial pipes. The geometrical shape of vortices with washed away outlines cannot be precisely 
described.  It is assumed in the posterior analysis for the modeling purpose that the vortex core is a sphere that rotates 
and moves as the quasi-rigid body. The vortex rotation is manifestly maintained by parabolic velocity profile of the 
laminar flow (Fig. 1).  

                                                      
                      Fig.1 Velocity profile of laminar flow in a pipe and locations of vortices. 
 

 Depending on the vortex location, the angular velocity ω is clockwise for y < 0 and counter-clockwise for y > 0. The 
motion of spinning vortices in the stream of viscous fluid is accompanied by the appearance of transversal Magnus 
force, which   compels the vortices to move across the stream, thus overcoming contrary resistance. 
 

                                                                II. SEMI – EMPIRICAL METHOD 
 
A. Simulation of turbulent flow in “intermittent phase”. 
 
The distinctive indication of turbulence is a pulsatory flow generated by motion of vortices. Moving across the pipe 
vortices change in a random manner the laminar velocity profile into the turbulent one.  The experiments made, for 
example by J.C. Rotta, have established this effect of interchange and  factors of intermittency.  The appearance and 
forming of the turbulent velocity profile can be theoretically analyzed based on the Navier-Stokes equation.  Consider  
a long, circular pipe with diameter R and coordinate x in the direction of the axis of the pipe. Since the velocity of flow 
is relatively small, it can be assumed that flow may be taken to be independent on x.  When the axial component of 
velocity u ceases to depend on x, the other velocity component must vanish together with the convective terms parallel 
to the pipe axis. Thus, instead of the three Navier - Stokes equations in cylindrical coordinates the following equation 
without  any other simplifications can be presented as 

 
                                                     ∂u/∂t	=	−ρ−1∂p/∂x	+	ν	(∂2u/∂y	2	+	y−1∂u/∂y)																																											(1)	 
	

         with boundary conditions: u = 0 at  y = R  and  y = −  R.  In this equation ρ – fluid density, ν	–  kinematic viscosity, 
u –  velocity of flow, p – pressure, ρ			− density of fluid.	   

										For steady laminar flow	∂u/∂t	= 0,	∂p/∂x	=	− 4µR−2um,	[1, p.12], viscosity	µ =νρ,	um –  maximum velocity on the axis 
         and the solution of Eq. (1) is: 
 

																																																																						u0 (y) = um (1 − y2/ R2)                         (2) 
 
        Here u0 (y) – laminar velocity profile, mean velocity of flow u = 0.5 um. It is advisable for analysis of turbulent velocity 
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	 profile appearance in a flow to take into consideration two physical factors: the symmetry of the laminar and turbulent 

velocity profiles and equality of areas of both profiles assuming that flow rate is constant.  The symmetry of the 
turbulent velocity profile is an indication that the vortex is located in the vicinity of the piping axis.  The streamlining of 
vortices is accompanied by increase of the pressure, frontal resistance and the velocity and pressure decrease behind the 
vortices.  For example, the measurements made by O. Flachsband have shown the pressure drop behind the sphere and 
cylinder in flow (see Ref. in [1], pp. 34, 35).  Therefore, the coercion of a vortex on resistance of laminar flow and 
velocity profile can be presented as 

   
                                                                  ∆p = 4µR−2lum (1 − b)                                                                                            (3) 
 

Here b – coefficient of pressure and  velocity  drop  behind  the  vortex,  l – length  between two cross – sections of a  
pipe.  Hereafter we will define the coefficient b as a ratio W1/W0, where W0 – drag of the laminar flow and W1 – frontal  
drag of the vortex in the vicinity of axis.  
Accordingly, 

                                                             W0 = 0.5⋀ ρu2lπ	R2D −1       (4) 
 
                                                  W1 = 0.5ρ2Cw A, ([1], p. 16)                                                                           (5) 
 

Here, D = 2R, Darcy friction factor ⋀  = 64Re−1, Reynolds number Re = Duν −1, the dimensionless coefficient for drag 
Cw = f(Res), vortex’s frontal area A = πr 2, d = 2r, r – vortex’s radius.  The drag coefficient of spheres plotted against 
the Reynolds number based on the experimental measurements is shown in Fig. 2, [1, p.17], Res = d y/ν −1, y/ = um. The     
measurements performed by J. Nikuradze determined that the fully formed turbulent velocity profile exists already                      
after an inlet length of 25 to 40 diameters [15]. Thereafter, we finally obtain the following empirical relation: 
 
                                                b  =  W1/W0  = 0.25Cw r2Re(Dl ) −1                                                                                     (6)                                         

     
   The length l is taken as distance between two turbulent profile appearances at the axis of pipe. 

                              
                                   Fig. 2  Drug coefficient for spheres as a function of the Reynolds number. 
                                        Measurements by C. Wieselsberger, et al. (Ref. in [1], p. 17, Fig. 1. 5). 
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The laminar and turbulent velocity  profiles after transition are considered on conditions that flow rate and, hence, the 
areas of both profiles are equal and symmetrical.  The “zero function” f (y) was introduced to implement these 
conditions and change of the laminar velocity profile to turbulent one. For convenience of analysis the origin of 
coordinates is displaced to – R, and, hence, the equation for laminar profile is u (y) = um y 2R −2, u (y) = um y2R −2, and 
“zero function” f (y) is introduced as following:  
 
    f (y) =  a um sinπ y R −1–  b um y R −1                                                               (7)   
								

	The summa of “zero function” is 𝑓(𝑦)𝑑𝑦 = 0.!
!  Correspondingly,  

                                   a um  !
! sinπ y R −1𝑑𝑦 = a um Rπ −1   !

! sin y𝑑𝑦 = 2aumRπ −1 =  0.5bum R. 
 
Coefficient  a = 0.25πb and finally f(y) = 0.7854bum sinπ y R −1–  b um y R −1                                               (8)                                                                                            
 
The deduced relationships (6) and (8) provide a chance to graphically demonstrate the formation of turbulent velocity 
profile in a circular pipe.  Let us now consider, for example, the  flow of water in a pipe with diameter D = 0.2m and 
Re = 2300.  The radius of vortex r = 0.03m. In the middle of a pipe u = 2um, Res = 2rR −1 Re  = 1380 and coefficient for 
drag C w = 0.5 (Fig.5). The length l = 36D. Thereby, b = 0.18.     
 
                                                         f(y) = 0.1414um sinπ y R −1–  0.18umyR −1                                               (9)  

																																				  
                              Fig 3.  The graph of the regular turbulent velocity profile. 
 
         ____   “zero function”  f(y) _ . _   laminar velocity profile  u0    

       __ 
“
 __      turbulent velocity profile    u0+ u 
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The important conclusion follows from the method dealing with determination of appearance of turbulent velocity 
profile. Since the shape of turbulent velocity profile for constant flow rate is invariable, the coefficient b is also constant 
and at first for any Reynolds number the ratio C w r2 l −1 ≈  constant.  So, the increase  of  intermittency  factor  depends  
mainly on velocity u. It gives all reasons to state that the pace of vortices decay and, hence, increase of intermittency 
factor depends on velocity, not  on  Reynolds numbers.   The J. Rotta’s  experiments [1, p. 452, Fig.16.3]  made  on  a 
one  pipe of small diameter with step by step increased velocity u is the evidence of dependency only on velocity u.  
Thus, it can be certainly expected  that  for a  pipe with  large diameter  and Reynolds  number, but  lesser velocity  of 
flow,  the pace  of decay of vortices and rate of intermittency factor are sluggish with much longer distance from 
entrance  to the pipe to full turbulence.  It will be shown below that the rate of intermittency factor is actually  
characterized  by  ratio u D −1. Besides that, since C w r2 l −1 ≈ constant on the sufficient  distance from the entrance to a 
pipe the transition to turbulence can be defined within “intermittent phase” with the appropriate size of vortices. 
 

     B.  Universal numbers for determination of TTT. 

The equation of motion of the vortex’s center can be presented in the following form: 

                                           M y//= F m − F s                                                                                      (10) 

Here, M - mass of the vortex’s core, F m - Magnus force, F s - resistance force, 

    y//= d2y/dt2 and t - time... 

 The Magnus force is defined in accordance with the Kutta - Joukowski’s theorem  

                                                         F m = r u x Cr                                               (11) 
	Here, ρ - fluid density, u x – speed of flow across the pipe, Cr – vortex circulation. 
 The speed of flow for laminar flow in a circular pipe is described by the Hagen - Poiseuille’s law 
 

                  u x = um(1 – y 2R −2)                                 (12) 
 Here, um– largest stream speed at the pipe midst, R – radius of a pipe. 
 The circulation of the spherical vortex [16]  

 

                                                           Cr = − 0.5ux A f                                                                  (13) 

 Here, cross- section area of vortex A = π r2, r – radius of vortex core, f – shift coefficient. 

  Thus                                 

                                                      FmM−1 = N (R 2 – y 2) 2                                                         (14) 

            Here                   M = 4/3 *(ρπ r 3), N = − 0.375 um
2 r −1 f (R 2 – y 2) 2.  

 

                          So,  N = − 1.5Re2f r -1ν 2D −2(R 2 – y 2) −2.  Here D represents the swing of a vortex. Moving, for example, from lower 
wall to upper wall (Fig. 1) the vortex, crossing the   pipe axis, changes the direction of rotation.  The Magnus force also 
changes its sign, however, due to the inertia of rotation, the Magnus force changes the sign with some delay.  The 
multiplier B = (y – y /)*(I y – a y / I) −1 was introduced to take into account this effect. Here y /= d y/d t, a - coefficient of  

 delay.  Finally 
 

                                                           M −1 = NB (R 2 – y 2) 2                                                                                            (15) 
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Moving across the stream the vortex overcomes resistance defined as 
 
                                                           F s = 0.5 ρ,	V 2 (y) AC w                                                                      (16) 
Here, V (y) = y / - vortex’s speed across the stream, C w – drag coefficient.  The theoretical values of C w were obtained 
by G. G. Stokes and C. W. Oseen only for Res < 1.0.  Here, Res = y /dν −1

, d = 2 r, ν - kinematic viscosity.  Since the 
expected   Reynolds numbers Res may significantly exceed Res =1, the vast experimental data for resistance of 
moving spheres, measured by many researchers was used for further analysis.  The graph of the drag coefficient, as a 
function of Res, presented in Fig. 2.  In range of Res between 1.0 and 250 the experimental function C w = f (Res) is in 
a good compliance with the approximation 
 

                     C w = 21.66 Res−1+ 6.391 Res−0.417              (17) 
 

and resistance can be presented as                                                   

         F s M −1 = y / (k1+ k2 | y / | 0.583)                  (18) 

 
Here  k1 ≈ 4.061r − 2ν, k2 = 1.795 r −0.417 ν 0.417 .         
 
Upon introducing (10) - (18) the equation for analyzing the vortex’s motion becomes 
 

               y //= NB(R 2− y 2) 2 – y / (k1 + k2 | y /| 0.583).                 (19) 
 

Initial conditions: t = 0, y = − R + r, y / = 0.  
 
The peculiarity of Eq. (19) is the functional attribute of Magnus force to generate the vortex swing depending on the 
magnitude of Reynolds number and, hence, to define the suitable diameter of a pipe.  The coefficients a were obtained 
on condition that the trajectories of vortices are sinusoidal.  As an example, consider the flow of water in a pipe with 
internal diameter D = 0.2m and ν = 1.3 *10−6m2 sec−1 at 100C.  The shift coefficient  f  selected  for  this   example is  
0.3.   The computations show that, if a = 0, the considered vortex and, hence, all successive vortices will fade and flow 
downstream remains  laminar. For all N < 0 and a  > 0 the vortex’s motion is sinusoidal across the transverse section.  
According to the numerous experimental data transition to turbulence in industrial pipes occurs if Reynolds number is 
equal or exceed 2300.  Three cases with r = 0.03m, 0.02m and 0.01m were computed for turbulent flow with Re = 
2300 and two cases with Re = 2150, 2000 and r = 0.03m.  The swing of the vortex for these two cases is less than 
piping diameter.  The additional case for the pipe with D = 0.3m and Re = 2300   demonstrates that the swing of a 
vortex is less than piping diameter and TTT can occur only if Re ≥ 2660.  The results of computations are presented in 
Table1.  
          Table 1 Results of computations 
       ________________________________________________________________ 
       Re          r                  N      y0                    k1 x 10 3        k2

               y max                a    
      _________________________________________________________ 
     2300       0.01       −106.60        − 0.09         52.80        4.301     ± 0.09      4.150 
     2300       0.02        − 50.29        − 0.08        13.20        1.611       ±0.08      1.495  
     2300       0.03        − 33.53        − 0.07          5.87        0.907       ±0.07      0.960 
     2150       0.03        − 29.30        − 0.07          5.87        0.907       ±0.05      0.760 
     2000       0.03        − 25.35        − 0.07          5.87        0.907       ±0.04      0.670  
     2300 *    0.03        −8.83           − 0.12          5.87        0.907       ±0.086    0.906 
     2660 *    0.03         −15.20         −0.12          5.87        0.907       ±0.12      0.960 
     ________________________________________________________________   

        * Diameter of pipe D = 0.3m 
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The solutions of Eq. (19) for Re = 2300, 2150, 2000 with r = 0.03 are graphically presented in Fig. 4.  It is evident that 
diminution of the parameter INI below ∼ 29.0 and, accordingly, the coefficient a below ∼ 0.75 leads to diminution of  
the vortices swings.  Such vortices do not collide with the piping walls and do not disintegrate into smaller vortices.  
The velocity profile cannot sustain the circulation of vortices with diminished swings and, moving downstream, such 
vortices gradually cease to exist. 
 
 
  

 
 
These results are in conformity with generally known experimental data. Moving across the stream the vortices excite 
the periodic change of laminar and turbulent   regimes (intermittency) with increasing frequency downstream.  The 
effect of the intermittency in the round pipes was investigated and measured by J. C. Rotta and   D. Coles (from [1], p. 
452, Fig. 16.3).  To introduce this effect coefficient 𝛼 was modified with an additional multiplier a  (1 − | sin2pt /t |) and  
added to Eq.(19).  The period t   for Re = 2300 and r = 0.03m was selected based on the time of one cycle (~ 55 sec., 
Fig. 4a) and experimental data obtained by J. C. Rotta shown in Fig.5. 
 
 
 
Copyright to IJARSET www.ijarset.com                                                                         7280 

	
	

 
Fig 4. Graphic solutions of  
Eq. (19) for r = 0.03 m: 
 a) Re = 2300,                
 b) Re = 2150,  
 c) Re = 2000. 
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The intermittency factor g was taken equals ~ 0.1 (close to the pipe entrance) and, accordingly, t ≈ 550 sec. The periods 
t for Re = 2300 and diameters r  = 0.02m and 0.01m were taken proportional to diameter 0.03m, i.e. for diameter r = 
0.02m,  t ≈ 366 sec and proportionally for r = 0.01m, period t ≈ 180 sec.   The trajectories of the vortices centers in Fig. 
6 demonstrate the effect of the intermittency downstream with increasing γ.  The vortex model also reveals the essential 
feature of transition to  turbulence.  The said experiments performed by J. C. Rotta and D. Coles show that increase  of 
ratio D/0.5um with the same Reynolds number leads to increase of the time of  transition to complete turbulence and the 
need to increase the diameter of pipe 0.3m and Re = 2300  (one from the bottom in Table 1).  The result shows that the 
vortex does not reach and does not clash with the piping walls, y max = 0.0862m.  Obviously, very little  curvature of the 
velocity profile cannot maintain the vortices rotation and, moving  downstream, the vortices gradually disintegrate and 
flow remains laminar.  To provide the vortex’s clash with the piping walls Re must be at least 2660.  These two cases 
are the evidence that critical Reynolds number Rec depends on the ratio λ = 0.5um/D.  
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Fig.5. Intermittency factor g for pipe flow 
in the transition range in terms of the axial 
distance x for different Reynolds numbers 
Re, measured by J. Rotta. γ =1 denotes 
continuously turbulent, γ = 0 continuously 
laminar flow  
([1], p. 452, Fig. 16. 3).  
 

Fig.6. Graphic solutions of 
Eq. (19) with the effect of 
intermittency downstream 
for Re = 2300: a) r = 0.03m,  
b) r = 0.02m, c) r = 0.01m 
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 Based on the numerical data, presented in Table1, the critical number for laminar to turbulent transition (LT) in pipes 
with diameters in a range between 0.16m and 0.5m  and vortices with r = 0.03m can be defined as: 
 
                                                    LT = Re2 

* Ma ≈ 56.                    (20) 
 
Here, Mach number Ma = 0.5 um/v s; v s – velocity of sound in medium.  For water v s = 1440m/sec, the suitable 
diameter of a pipe for of TTT is 2(y + r). 
        Examples: D = 0.16m, 0.5um = 0.0175 m/sec, Re = 2150, LT = 56.06; 
                          D = 0.2m, 0.5um = 0.01505 m/sec, Re = 2315, LT = 56.0; 
                          D = 0.3m, 0.5um = 0.01152 m/sec, Re = 2660, LT = 56.6; 
                          D = 0.5m, 0.5um = 0.00818 m/sec, Re = 3150, LT = 56.36. 
For comparison D = 0.14m, 0.5um = 0.01875 m/sec, Re = 2000, LT = 51.58. 
The diagram of critical numbers for transition to turbulence with ratio λ=0.5um D−1 for r=0.03m is shown in Fig. 7.   
 
 

                           
 
Fig 7. The diagrams of critical numbers for transition to turbulence in a pipe with ratio λ=0.5um* D−1 (broken line),  
           r = 0.03m 

 For practical applications the ratio of 0.5um ≈ 29.5m/ hr to a pipe with D = 0.5m and Magnus force F m = f (r2
*um

2
*D −4) 

are assigned as minimum threshold to maintain the motion of vortices with r = 0.03m from wall to wall. The ratio λ = 
0.0165 sec−1 characterizes the least Magnus force ability to create vortices with swing equals diameter of pipes with D ≥ 
0.5m. So, for the pipes with diameters D greater than 0.5m, the critical Reynolds number Rec for transition to turbulence 
can be defined as  
                 LT = Rec = λ D 2ν −1 																																																																										(21) 
λ = 0.0165 sec−1 (Fig. 7).  
For example: D = 0.8m, Rec = 0.0165 * 0.8 2* 1.3−1 * 106 = 8123.0  
 

                    III. DISCUSSION 
 
The distinctive features of presented vortex model and solutions of the governing equation are the following: a) The 
numerical analysis shows that transition to turbulence in a pipe with diameter 0.2m and vortex with radius 0.03m    
occurs at commonly accepted critical Re = 2300. b) The increase in intermittency and turbulence resultant due to 
diffusion of vortices  was computed and graphically demonstrated  c) The representative number of cases with different 
Reynolds number, piping diameters and diameters of vortices was analyzed to  formulate the new numerical  
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criteria for transition to turbulence  d) The following is noteworthy: the intermittency factor for pipes with critical 
Reynolds numbers γ2150 >γ2315 > γ660 > γ3150... and accordingly distances between turbulent spikes and distance from the 
entrance to the pipe increase to full turbulence  e) The appearance of  turbulence can be detected irrespective of the 
vortices irregularity and sizes. Note: There is an interesting, feasible scenario. If a pipe is smooth, the turbulence occurs 
at large Reynolds number. However, after the turbulence is established, the velocity of flow  (pressure head) can be 
diminished until Reynolds number becomes critical.  

 
      IV. CONCLUSION 

The analysis of interaction of moving vortices with laminar flow in a pipe revealed the formation of turbulent velocity   
profile generated by vortices drag.   The ‘’zero function” was introduced for elucidation of turbulent velocity profile, 
assuming that flow rate is constant.   By introducing the eddy diffusivity model with effect of the Magnus force, new 
constant, critical numbers have been derived for indication of transition to turbulence in industrial pipes conveying fluid.  
The solutions of governing Eq.19 specify the required numerical relations for vortex circulation, Magnus force and ratio 
of the mean velocity to piping diameter to trigger off turbulence, Fig.7.  The results graphically demonstrate the  
dynamics of vortices, necessity of vortices to collide with piping walls in turbulent regime, turbulent diffusion and  
increase of intermittency  factor downstream.  Albeit the propose semi – empirical model does not take into account the 
stochastic constituent and implies that only motion of vortices is the major factor generating turbulence, the results are 
in compliance with well – known, fundamental experiments.  The obtained universal numbers (20) and (21) can be 
instrumental in engineering applications. 
 

   Nomenclature 
M – mass of the vortex’s core, F m – Magnus force, F s – resistance force, ρ - fluid density,  
ν – kinematic viscosity, u x - average speed of flow, um - largest speed of flow, 
R, D – radius and diameter of the pipe, π  = 3.14..., A = π r2 - vortex’s core cross area, 
r, d - radius and diameter of vortex’s core, Cr  - spherical  vortex’s  circulation, 

         Re = 0.5 um Dν-1,  Res = y/dν- −1, y / - vortex speed across the stream,  
         C w – drag coefficient, f – shift coefficient,  ω - frequency of the vortex motion, 
         γ - intermittency factor, w - vortex’s angular velocity.  
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