

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 6, Issue 8, August 2019

On a Subclass of Multivalent Functions **Defined by Differential Operator**

Najah Ali Jiben Al-Ziadi

Department of Mathematics, College of Education, University of Al-Qadisiyah, Diwaniya-Iraq

ABSTRACT: Making use of a differential operator, we introduce a new subclass $T(\lambda, \beta, m, n, p, j)$ of multivalent analytic functions in the open unit dick U. We study coefficient inequality, radii of close-to-convexity, starlikeness and convexity, integral mean for functions belonging to the defined class are obtained and we discuss some classes preserving integral operators.

KEY WORDS: Multivalent function, differential operator, convolution, radii of close-to-convexity, integral mean.

I.INTRODUCTION

Let W(p, j) be the class of all functions of the form:

$$f(z) = z^p + \sum_{k=j+p}^{\infty} a_k z^k, \quad (k \ge j+p; \ p, j \in \mathbb{N} = \{1, 2, \dots\}), \tag{1}$$

which are analytic and multivalent in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$

Let T(p,j) denote the subclass of W(p,j) containing of functions of the form:

$$f(z) = z^p + \sum_{k=j+p}^{\infty} a_k z^k, \quad (a_k \ge 0; \ k \ge j+p; \ p, j \in \mathbb{N} = \{1, 2, \dots\}), \tag{2}$$

which are analytic and multivalent in the open unit disk U.

If $f \in T(p, j)$ is given by (2) and $g \in T(p, j)$ given by

$$g \in I(p, j)$$
 given by
$$g(z) = z^p + \sum_{k=j+p}^{\infty} b_k z^k, \quad (k \ge j + p; \ p, j \in \mathbb{N} = \{1, 2, ...\}),$$
 (3)

then the Hadamard product (or convolution)
$$f * g ext{ of } f ext{ and } g ext{ is defined by}$$

$$(f * g)(z) = z^p + \sum_{k=j+p}^{\infty} a_k b_k z^k = (g * f)(z). \tag{4}$$

A function
$$f \in T(p, j)$$
 is said to be p-valently starlike of order ρ if
$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \rho, \qquad (0 \le \rho < p; \ z \in U). \tag{5}$$

A function $f \in T(p, j)$ is said to be p-valently convex of order ρ if

$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \rho, \quad (0 \le \rho < p; \ z \in U).$$
 (6)

It follows from expression (5), (6) that f(z) is convex if and only if zf'(z) is starlike.

A function $f \in T(p, j)$ is close-to-convex of order ρ if

$$Re\left\{\frac{f^{'}(z)}{z^{p-1}}\right\} > \rho, \qquad (0 \le \rho < p; \ z \in U). \tag{7}$$

For a function f(z) in the class T(p,j), Aouf and Mostafa [2] defined the differential operator $D_p^n: T(p,j) \to$ T(p, j), where

$$D_p^0 f(z) = f(z),$$

 $D_p^1 f(z) = D_p f(z) = \frac{z}{p} f'(z),$

Copyright to IJARSET www.ijarset.com 10345

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

$$\begin{split} &D_p^2 f(z) = D\left(D_p f(z)\right),\\ &D_p^n f(z) = D\left(D_p^{n-1} f(z)\right) = z^p + \sum_{k=j+p}^{\infty} \left(\frac{k}{p}\right)^n a_k z^k, \qquad (n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}). \end{split}$$

For p = j = 1, the differential operator D^n was introduced by Salagean [8].

Definition (1): A function $f \in T(p,j)$ is said to be in the class $T(\lambda, \beta, m, n, p, j)$ if and only if

$$\left| \frac{(1-\lambda)z\left(D_p^n f(z)\right)^{"} + \lambda z\left(D_p^{n+m} f(z)\right)^{"}}{(1-\lambda)\left(D_p^n f(z)\right)^{'} + \lambda \left(D_p^{n+m} f(z)\right)^{'}} - (p-1) \right| < \beta, \tag{8}$$

where $0 \le \lambda \le 1, 0 < \beta \le 1, (m, n \in \mathbb{N}_0), (m, p, j \in \mathbb{N})$ and $z \in U$. Some of the following properties studied for other classes in [1,3,4,5]

II. COEFFICIENT INEQUALITY

In the following theorem, we obtain the necessary and sufficient condition to be the function f in the class $T(\lambda, \beta, m, n, p, j)$.

Theorem (1): Let $f \in T(p, j)$. Then the function $f \in T(\lambda, \beta, m, n, p, j)$ if and only if

$$\sum_{k=i+p}^{\infty} k \left(\frac{k}{p}\right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right) a_k \le p\beta, \tag{9}$$

where $0 \le \lambda \le 1, 0 < \beta \le 1, (m, n \in \mathbb{N}_0), (m, p, j \in \mathbb{N})$ and $z \in U$.

The result is sharp for the function

$$f(z) = z^p + \frac{p\beta}{k\left(\frac{k}{p}\right)^n (k - p - \beta)\left(1 + \lambda\left(\frac{k}{p}\right)^m - \lambda\right)} z^k, \quad (k \ge j + p).$$

$$\tag{10}$$

Proof: Suppose that the inequality (9) holds true and |z| = 1

Then, we have

Then, we have
$$\left| (1-\lambda)z \left(D_p^n f(z) \right)^n + \lambda z \left(D_p^{n+m} f(z) \right)^n - (p-1)(1-\lambda) \left(D_p^n f(z) \right)^n - \lambda (p-1) \left(D_p^{n+m} f(z) \right)^n \right|$$

$$- \beta \left| (1-\lambda) \left(D_p^n f(z) \right)^n + \lambda \left(D_p^{n+m} f(z) \right)^n \right|$$

$$= \left| \sum_{k=j+p}^{\infty} k(k-p) \left(\frac{k}{p} \right)^n \left(1 + \lambda \left(\frac{k}{p} \right)^m - \lambda \right) a_k z^{k-p} \right| - \beta \left| p + \sum_{k=j+p}^{\infty} k \left(\frac{k}{p} \right)^n \left(1 + \lambda \left(\frac{k}{p} \right)^m - \lambda \right) a_k z^{k-p} \right|$$

$$\leq \sum_{k=j+p}^{\infty} k(k-p) \left(\frac{k}{p} \right)^n \left(1 + \lambda \left(\frac{k}{p} \right)^m - \lambda \right) a_k |z|^{k-p} - p\beta - \beta \sum_{k=j+p}^{\infty} k \left(\frac{k}{p} \right)^n \left(1 + \lambda \left(\frac{k}{p} \right)^m - \lambda \right) a_k |z|^{k-p}$$

$$= \sum_{k=j+p}^{\infty} k \left(\frac{k}{p} \right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p} \right)^m - \lambda \right) a_k - p\beta \leq 0,$$

by hypothesis.

Hence, by maximum modulus principle, $f \in T(\lambda, \beta, m, n, p, j)$.

Conversely, Suppose that $f \in T(\lambda, \beta, m, n, p, j)$. Then from (8), we have

$$\left| \frac{\left(1 - \lambda\right)z\left(D_p^n f(z)\right)^{''} + \lambda z\left(D_p^{n+m} f(z)\right)^{''}}{\left(1 - \lambda\right)\left(D_p^n f(z)\right)^{'} + \lambda z\left(D_p^{n+m} f(z)\right)^{''}} - (p-1) \right|$$

$$= \left| \frac{\left(1 - \lambda\right)z\left(D_p^n f(z)\right)^{''} + \lambda z\left(D_p^{n+m} f(z)\right)^{''} - (p-1)\left(\left(1 - \lambda\right)\left(D_p^n f(z)\right)^{'} + \lambda \left(D_p^{n+m} f(z)\right)^{'}\right)}{\left(1 - \lambda\right)\left(D_p^n f(z)\right)^{'} + \lambda \left(D_p^{n+m} f(z)\right)^{'}} \right|$$

Copyright to IJARSET <u>www.ijarset.com</u> 10346

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

$$=\left|\frac{\sum_{k=j+p}^{\infty}k(k-p)\left(\frac{k}{p}\right)^{n}\left(1+\lambda\left(\frac{k}{p}\right)^{m}-\lambda\right)a_{k}z^{k-p}}{p+\sum_{k=j+p}^{\infty}k\left(\frac{k}{p}\right)^{n}\left(1+\lambda\left(\frac{k}{p}\right)^{m}-\lambda\right)a_{k}z^{k-p}}\right|<\beta.$$

Since $Re(z) \le |z|$ for all z, we have

$$Re \left\{ \frac{\sum_{k=j+p}^{\infty} k(k-p) \left(\frac{k}{p}\right)^n \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right) a_k z^{k-p}}{p + \sum_{k=j+p}^{\infty} k \left(\frac{k}{p}\right)^n \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right) a_k z^{k-p}} \right\} < \beta.$$

If we choose z on the real axis and let $z \to 1^-$, then

$$\sum_{k=j+p}^{\infty} k \left(\frac{k}{p}\right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right) a_k \le p\beta.$$

Finally, sharpness follows if we take

$$f(z) = z^{p} + \frac{p\beta}{k\left(\frac{k}{p}\right)^{n} (k - p - \beta)\left(1 + \lambda\left(\frac{k}{p}\right)^{m} - \lambda\right)} z^{k}, \quad (k \ge j + p; \ p, j \in \mathbb{N}).$$

Corollary (1): Let $f \in T(\lambda, \beta, m, n, p, j)$. Then

$$a_{k} \leq \frac{p\beta}{k\left(\frac{k}{p}\right)^{n} (k - p - \beta)\left(1 + \lambda\left(\frac{k}{p}\right)^{m} - \lambda\right)}, \quad (k \geq j + p; \ p, j \in \mathbb{N}). \tag{11}$$

III. Radii of close-to-convexity, star likeness and convexity.

Using the inequalities (5), (6), (7) and Theorem (1), we can compute the radii of close-to-convexity, starlikeness and convexity.

Theorem (2): Let a function $f \in T(\lambda, \beta, m, n, p, j)$. Then f is p-valently close- to-convex of order ρ ($0 \le \rho < p$) in the disk $|z| < r_1$, where

$$r_{1}(\lambda,\beta,m,n,p,j,\rho) = \inf_{k} \left\{ \frac{(p-\rho)\left(\frac{k}{p}\right)^{n}(k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^{m}-\lambda\right)}{p\beta} \right\}^{\frac{1}{k-p}}, \quad (k \geq j+p; \ p,j \in \mathbb{N}).$$

The result is sharp, with the external function f given by (10).

Proof: It is sufficient to show that

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p - \rho \quad (0 \le \rho < p),$$

for $|z| < r_1(\lambda, \beta, m, n, p, j, \rho)$, we have that

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| \le \sum_{k=j+p}^{\infty} k a_k |z|^{k-p}$$

Thus

$$\left|\frac{f'(z)}{z^{p-1}} - p\right| \le p - \rho,$$

if

$$\sum_{k=j+p}^{\infty} \frac{k a_k |z|^{k-p}}{p-\rho} \le 1.$$
 (12)

Hence, by Theorem (1), (12) will be true if

$$\frac{1}{(p-\rho)}|z|^{k-p} \le \frac{\left(\frac{k}{p}\right)^n (k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^m-\lambda\right)}{n\beta},$$

and hence

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

$$|z| \leq \left\{ \frac{(p-\rho)\left(\frac{k}{p}\right)^n (k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^m-\lambda\right)}{p\beta} \right\}^{\frac{1}{k-p}}, \quad (k \geq j+p; \ p,j \in \mathbb{N}).$$

Setting $|z| = r_1$, we get the desired result.

Theorem (3): Let $f \in T(\lambda, \beta, m, n, p, j)$. Then f is p-valently starlike of order ρ ($0 \le \rho < p$) in the disk $|z| < r_2$, where

$$r_{2}(\lambda,\beta,m,n,p,j,\rho) = \inf_{k} \left\{ \frac{k(p-\rho)\left(\frac{k}{p}\right)^{n}(k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^{m}-\lambda\right)}{p\beta(k-\rho)} \right\}^{\frac{1}{k-p}}, \quad (k \geq j+p; \ p,j \in \mathbb{N}).$$

The result is sharp for the function f given by (10).

Proof: It is sufficient to show that

$$\left| \frac{zf'(z)}{f(z)} - p \right| \le p - \rho \quad (0 \le \rho < p),$$

for $|z| < r_2(\lambda, \beta, m, n, p, j, \rho)$, we have

$$\left| \frac{zf^{'}(z)}{f(z)} - p \right| \leq \frac{\sum_{k=j+p}^{\infty} (k-p)a_k |z|^{k-p}}{1 - \sum_{k=j+p}^{\infty} a_k |z|^{k-p}}.$$

Thus

$$\left|\frac{zf^{'}(z)}{f(z)} - p\right| \le p - \rho,$$

if

$$\sum_{k=j+p}^{\infty} \frac{(k-\rho)}{(p-\rho)} a_k |z|^{k-p} \le 1.$$
 (13)

Hence, by Theorem (1), (13) will be true if

$$\frac{(k-\rho)}{(p-\rho)}|z|^{k-p} \leq \frac{k\left(\frac{k}{p}\right)^n(k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^m-\lambda\right)}{p\beta},$$

and hence

$$|z| \leq \left\{ \frac{k(p-\rho)\left(\frac{k}{p}\right)^n (k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^m-\lambda\right)}{p\beta (k-\rho)} \right\}^{\frac{1}{k-p}}, \quad (k \geq j+p; \ p,j \in \mathbb{N}).$$

Setting $|z| = r_2$, we get the desired result.

Theorem (4): Let $f \in T(\lambda, \beta, m, n, p, j)$. Then f is p-valently convex of order ρ ($0 \le \rho < p$) in the disk $|z| < r_3$, where

$$r_{3}(\lambda,\beta,m,n,p,j,\rho) = \inf_{k} \left\{ \frac{(p-\rho)\left(\frac{k}{p}\right)^{n} (k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^{m}-\lambda\right)}{\beta (k-\rho)} \right\}^{\frac{1}{k-p}}, \quad (k \geq j+p; \ p,j \in \mathbb{N}).$$

The result is sharp with the external function f given by (10).

Proof: it is sufficient to show that

$$\left|1 + \frac{zf''(z)}{f'(z)} - p\right| \le p - \rho \quad (0 \le \rho < p),$$

for $|z| < r_3(\lambda, \beta, m, n, p, j, \rho)$, we have

$$\left| 1 + \frac{zf''(z)}{f'(z)} - p \right| \le \frac{\sum_{k=j+p}^{\infty} k(k-p)a_k |z|^{k-p}}{p - \sum_{k=j+p}^{\infty} k |a_k| |z|^{k-p}}.$$

Thus

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

$$\left|1 + \frac{zf^{''}(z)}{f^{'}(z)} - p\right| \le p - \rho,$$

if

$$\sum_{k=j+p}^{\infty} \frac{k(k-\rho)}{p(p-\rho)} a_k |z|^{k-p} \le 1.$$
 (14)

Hence, by Theorem (1), (14) will be true if

$$\frac{(k-\rho)}{(p-\rho)}|z|^{k-p} \leq \frac{\left(\frac{k}{p}\right)^n (k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^m-\lambda\right)}{\beta},$$

and hence

$$|z| \leq \left\{ \frac{(p-\rho)\left(\frac{k}{p}\right)^n (k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^m-\lambda\right)}{\beta (k-\rho)} \right\}^{\frac{1}{k-p}}, \quad (k \geq j+p; \ p,j \ \in \ \mathbb{N}).$$

Setting $|z| = r_3$, we get the desired result.

IV. INTEGRAL MEANS

Definition (2)[7]: Let f, g be analytic in U. Then f is said to be subordinate to g, written f < g, if there exists a schwarz function w(z), which is analytic in U, with w(0) = 0 and |w(z)| < 1 ($z \in U$) such that $f(z) = g(w(z)), (z \in U)$. In particular, if the function g is univalent in U we have the following:

 $f(z) \prec g(z) (z \in U)$ if and only if f(0) = g(0) and $f(U) \subset g(U)$.

In1925, Littlewood [6] proved the following subordination result which will be required in our present investigation.

Lemma(1)[6]: If f and g are analytic in U with f < g, then

$$\int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{\mu} d\theta \le \int_{0}^{2\pi} \left| g(re^{i\theta}) \right|^{\mu} d\theta, \tag{15}$$

where $\mu > 0$, $z = re^{i\theta}$ and (0 < r < 1).

Applying Theorem (1) and Lemma (1), we prove the following:

Theorem (5): Let $\mu > 0$. If $f \in T(\lambda, \beta, m, n, p, j)$ and suppose that f_s is defined by

$$f_s(z) = z^p + \frac{p\beta}{s\left(\frac{s}{p}\right)^n (s - p - \beta)\left(1 + \lambda\left(\frac{s}{p}\right)^m - \lambda\right)} z^s, (s \ge j + p; p, j \in \mathbb{N}).$$

If there exists an analytic function w defined by

$$(w(z))^{s-p} = \frac{s\left(\frac{s}{p}\right)^n (s-p-\beta)\left(1+\lambda\left(\frac{s}{p}\right)^m-\lambda\right)}{p\beta} \sum_{k=i+n}^{\infty} a_k z^{k-p}.$$

Then, for $z = re^{i\theta}$ and (0 < r < 1),

$$\int_{0}^{2\pi} |f(z)|^{\mu} d\theta \le \int_{0}^{2\pi} |f_{s}(z)|^{\mu} d\theta, \quad (\mu > 0).$$
 (16)

Proof: We must show that

$$\int_{0}^{2\pi} \left| 1 + \sum_{k=j+p}^{\infty} a_k z^{k-p} \right|^{\mu} d\theta \le \int_{0}^{2\pi} \left| 1 + \frac{p\beta}{s \left(\frac{s}{p} \right)^n (s-p-\beta) \left(1 + \lambda \left(\frac{s}{p} \right)^m - \lambda \right)} z^{s-p} \right|^{\mu} d\theta.$$

By applying Lemma (1), it suffices to show that

Copyright to IJARSET www.ijarset.com 10349

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

$$1+\sum_{k=j+p}^{\infty}a_kz^{k-p}<1+\frac{p\beta}{s\left(\frac{s}{p}\right)^n\left(s-p-\beta\right)\left(1+\lambda\left(\frac{s}{p}\right)^m-\lambda\right)}z^{s-p}.$$

Set

$$1+\sum_{k=j+p}^{\infty}a_kz^{k-p}=1+\frac{p\beta}{s\left(\frac{s}{p}\right)^n(s-p-\beta)\left(1+\lambda\left(\frac{s}{p}\right)^m-\lambda\right)}\big(w(z)\big)^{s-p}.$$

We find that

$$(w(z))^{s-p} = \frac{s\left(\frac{s}{p}\right)^n (s-p-\beta)\left(1+\lambda\left(\frac{s}{p}\right)^m-\lambda\right)}{p\beta} \sum_{k=i+n}^{\infty} a_k z^{k-p},$$

which readily yield w(0) = 0.

Furthermore using (9), we obtain

$$|w(z)|^{s-p} = \left| \frac{s\left(\frac{s}{p}\right)^n (s-p-\beta) \left(1 + \lambda \left(\frac{s}{p}\right)^m - \lambda\right)}{p\beta} \sum_{k=j+p}^{\infty} a_k z^{k-p} \right|$$

$$\leq |z|^j \left| \sum_{k=j+p}^{\infty} \frac{k \left(\frac{k}{p}\right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right)}{p\beta} a_k \right| \leq |z| < 1.$$

Next, the proof for the first derivative

Theorem (6): Let $\mu > 0$. If $f \in T(\lambda, \beta, m, n, p, j)$ and

$$f_s(z) = z^p + \frac{p\beta}{s\left(\frac{s}{p}\right)^n (s - p - \beta)\left(1 + \lambda\left(\frac{s}{p}\right)^m - \lambda\right)} z^s, \ (s \ge j + p; p, j \in \mathbb{N}).$$

Then for $z = re^{i\theta}$ and (0 < r < 1)

$$\int_{0}^{2\pi} |f'(z)|^{\mu} d\theta \le \int_{0}^{2\pi} |f_{s}'(z)|^{\mu} d\theta, \qquad (\mu > 0). (17)$$

Proof: It is sufficient to show that

$$1+\sum_{k=j+p}^{\infty}\frac{k}{p}a_kz^{k-p}<1+\frac{\beta}{\left(\frac{s}{p}\right)^n(s-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^m-\lambda\right)}z^{s-p}.$$

This follows because

$$\begin{split} |w(z)|^{s-p} &= \left| \frac{\left(\frac{s}{p}\right)^n \left(s-p-\beta\right) \left(1+\lambda \left(\frac{s}{p}\right)^m-\lambda\right)}{\beta} \sum_{k=j+p}^{\infty} \frac{k}{p} a_k z^{k-p} \right| \\ &\leq |z|^j \left| \sum_{k=j+p}^{\infty} \frac{k \left(\frac{k}{p}\right)^n \left(k-p-\beta\right) \left(1+\lambda \left(\frac{k}{p}\right)^m-\lambda\right)}{p\beta} a_k \right| \leq |z| < 1. \end{split}$$

The following theorem discuss the subordination condition to f * g

Theorem (7): Let g of the form (3) and $f \in T(\lambda, \beta, m, n, p, j)$ be of the form (2) and let for some $s \in \mathbb{N}$,

$$\frac{Q_s}{b_s} = \min_{k \ge j+p} \frac{Q_k}{b_k},$$

where

$$Q_{k} = \frac{k\left(\frac{k}{p}\right)^{n} (k - p - \beta) \left(1 + \lambda \left(\frac{k}{p}\right)^{m} - \lambda\right)}{p\beta}.$$

Also, let for such $s \in \mathbb{N}$, the functions f_s and g_s be defined respectively by

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

$$f_s(z) = z^p + \frac{p\beta}{s\left(\frac{s}{p}\right)^n (s - p - \beta) \left(1 + \lambda \left(\frac{s}{p}\right)^m - \lambda\right)} z^s,$$

$$g_s(z) = z^p + b_s z^s. (18)$$

 $g_s(z) = z^p + b_s z^s.$ If there exists an analytic function w defined by

$$(w(z))^{s-p} = \frac{s\left(\frac{s}{p}\right)^n (s-p-\beta) \left(1+\lambda \left(\frac{s}{p}\right)^m - \lambda\right)}{p\beta b_s} \sum_{k=j+p}^{\infty} a_k b_k z^{k-p} ,$$

then , for $\mu > 0$ and $z = re^{i\theta}$ and (0 < r < 1),

$$\int_{0}^{2\pi} |(f * g)(z)|^{\mu} d\theta \le \int_{0}^{2\pi} |(f_{s} * g_{s})(z)|^{\mu} d\theta, \qquad (\mu > 0).$$

Proof: convolution of f and g is defined as:

$$(f * g)(z) = z^p + \sum_{k=j+p}^{\infty} a_k b_k.$$

Similarly, from (18), we obtain

$$(f_s * g_s)(z) = z^p + \frac{p\beta b_s}{s\left(\frac{s}{p}\right)^n (s - p - \beta) \left(1 + \lambda \left(\frac{s}{p}\right)^m - \lambda\right)} z^s.$$

To prove the theorem, we must show that for $\mu > 0$ and $z = re^{i\theta}$ and (0 < r < 1),

$$\int_{0}^{2\pi} \left| 1 + \sum_{k=j+p}^{\infty} a_k b_k z^{k-p} \right|^{\mu} d\theta \le \int_{0}^{2\pi} \left| 1 + \frac{p\beta b_s}{s \left(\frac{s}{p} \right)^n (s - p - \beta) \left(1 + \lambda \left(\frac{s}{p} \right)^m - \lambda \right)} z^{s-p} \right|^{\mu} d\theta.$$

Thus, by applying Lemma (1), it would suffice to show that

$$1 + \sum_{k=j+p}^{\infty} a_k b_k z^{k-p} < 1 + \frac{p\beta b_s}{s \left(\frac{s}{p}\right)^n (s-p-\beta) \left(1 + \lambda \left(\frac{s}{p}\right)^m - \lambda\right)} z^{s-p}. \tag{19}$$

If the subordination (19) true, then there exists an analytic function w with w(0) = 0 and |w(z)| < 1 such that

$$1 + \sum_{k=j+p}^{\infty} a_k b_k z^{k-p} = 1 + \frac{p\beta b_s}{s\left(\frac{s}{n}\right)^n (s-p-\beta)\left(1 + \lambda \left(\frac{s}{n}\right)^m - \lambda\right)} (w(z))^{s-p}.$$

From the hypothesis of the theorem, there exists an analytic function w given by

$$(w(z))^{s-p} = \frac{s\left(\frac{s}{p}\right)^n(s-p-\beta)\left(1+\lambda\left(\frac{s}{p}\right)^m-\lambda\right)}{p\beta b_s} \sum_{k=j+p}^{\infty} a_k b_k z^{k-p},$$

which readily yield w(0) = 0. Thus for such function w, using the hypothesis in the coefficient inequality for the class $T(\lambda, \beta, m, n, p, j)$, we get

$$|w(z)|^{s-p} = \left| \frac{s\left(\frac{s}{p}\right)^n (s-p-\beta) \left(1 + \lambda \left(\frac{s}{p}\right)^m - \lambda\right)}{p\beta b_s} \sum_{k=j+p}^{\infty} a_k b_k z^{k-p} \right|$$

$$\leq |z|^j \left| \frac{s\left(\frac{s}{p}\right)^n (s-p-\beta) \left(1 + \lambda \left(\frac{s}{p}\right)^m - \lambda\right)}{p\beta b_s} \sum_{k=j+p}^{\infty} a_k b_k \right| \leq |z| < 1$$

Therefore, the subordination (19) holds true.

Now, we discuss the integral means inequalities for $f \in T(\lambda, \beta, m, n, p, j)$ and h defined by

$$h(z) = z^p + b_s z^s + b_{2s-p} z^{2s-p}, \qquad (b_s \ge 0, s \ge j + p).$$
 (20)

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 6, Issue 8, August 2019

Theorem (8): Let $f \in T(\lambda, \beta, m, n, p, j)$ and h given by (20).

If f satisfies

$$\sum_{k=j+p}^{\infty} a_k \le b_{2s-p} - b_s, \quad (b_s < b_{2s-p}), \tag{21}$$

and there exists an analytic function w such tha

$$b_{2s-p}(w(z))^{2(s-p)} + b_s(w(z))^{s-p} - \sum_{k=i+p}^{\infty} a_k z^{k-p} = 0.$$

Then, for $z = re^{i\theta}$ and (0 < r < 1),

Proof: By putting
$$z = re^{i\theta}$$
 (0 < r < 1), we see that

$$\int_{0}^{2\pi} |f(z)|^{\mu} d\theta = \int_{0}^{2\pi} \left| z^{p} + \sum_{k=i+n}^{\infty} a_{k} z^{k} \right|^{\mu} d\theta = r^{p\mu} \int_{0}^{2\pi} \left| 1 + \sum_{k=i+n}^{\infty} a_{k} z^{k-p} \right| d\theta$$

and

$$\int_{0}^{2\pi} |h(z)|^{\mu} d\theta = \int_{0}^{2\pi} |z^{p} + b_{s}z^{s} + b_{2s-p}z^{2s-p}|^{\mu} d\theta = r^{p\mu} \int_{0}^{2\pi} |1 + b_{s}z^{s-p} + b_{2s-p}z^{2(s-p)}|^{\mu} d\theta.$$

$$1 + \sum_{k=i+p}^{\infty} a_k z^{k-p} < 1 + b_s z^{s-p} + b_{2s-p} z^{2(s-p)}.$$

Let us define the function w by

$$1 + \sum_{k=j+p}^{\infty} a_k z^{k-p} = 1 + b_s (w(z))^{s-p} + b_{2s-p} (w(z))^{2(s-p)},$$

or by

$$b_{2s-p}(w(z))^{2(s-p)} + b_s(w(z))^{s-p} - \sum_{k=i+p}^{\infty} a_k z^{k-p} = 0.$$
 (22)

Since for z = 0, $(w(0))^{s-p} \{b_{2s-p}(w(0))^{s-p} + b_s\} = 0$.

There exists an analytic function w in U such that w(0) = 0.

Next, we prove the analytic function w satisfies |w(z)| < 1, $(z \in U)$ for the condition (21). By (22), we know that,

$$\left|b_{2s-p}(w(z))^{2(s-p)}+b_s(w(z))^{s-p}\right|=\left|\sum_{k=j+p}^{\infty}a_kz^{k-p}\right|<\sum_{k=j+p}^{\infty}a_k.$$

For $z \in U$, hence

$$b_{2s-p}|w(z)|^{2(s-p)} - b_s|w(z)|^{s-p} - \sum_{k=j+p}^{\infty} a_k < 0.$$
 (23)

Letting $t = |w(z)|^{s-p} (t \ge 0)$ in (23), we define the function G(t)

$$G(t) = b_{2s-p}t^2 - b_st - \sum_{k=i+p}^{\infty} a_k.$$

If $G(1) \ge 0$, then we have t < 1 for G(t) < 0. Indeed we have

$$G(1) = b_{2s-p} - b_s - \sum_{k=i+p}^{\infty} a_k \ge 0.$$

That is $\sum_{k=i+n}^{\infty} a_k \leq b_{2s-p} - b_s$.

Copyright to IJARSET www.ijarset.com 10352

International Journal of Advanced Research in Science, Engineering and Technology

Vol. 6, Issue 8, August 2019

V. Classes of Preserving Integral Operators

Theorem (9): Let $f(z) \in T(\lambda, \beta, m, n, p, j)$ be defined by (2) and c be any real number such that c > -p, then the integral operator

$$G(z) = \frac{c+p}{z^c} \int_{0}^{z} s^{c-1} f(s) ds, \qquad c > -p$$
 (24)

also belongs to $T(\lambda, \beta, m, n, p, j)$.

Proof: By virtue of (24) it follows from (2) that

$$\begin{split} G(z) &= \frac{c+p}{z^c} \int\limits_0^z s^{c-1} \left(s^p + \sum\limits_{k=j+p}^\infty a_k \, s^k \right) ds &= \frac{c+p}{z^c} \int\limits_0^z \left(s^{p+c-1} + \sum\limits_{k=j+p}^\infty a_k \, s^{k+c-1} \right) ds \\ &= z^p + \sum\limits_{k=j+p}^\infty \left(\frac{c+p}{c+k} \right) a_k \, z^k = z^p + \sum\limits_{k=j+p}^\infty h_k \, z^k \, \, \text{where} \, h_k = \left(\frac{c+p}{c+k} \right) a_k. \end{split}$$

But

$$\sum_{k=j+p}^{\infty} k \left(\frac{k}{p}\right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right) h_k = \sum_{k=j+p}^{\infty} k \left(\frac{k}{p}\right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right) \left(\frac{c+p}{c+k}\right) a_k.$$

Since $\left(\frac{c+p}{c+k}\right) \le 1$ and by (9) the last expression is less than or equal $p\beta$, so the proof is complete.

Theorem (10): Let $c \in \mathbb{R}$ (c > -p) if $G(z) \in T(\lambda, \beta, m, n, p, j)$, then the function f(z) defined by (24), is p-valent in $|z| < r_4$ where

$$r_{4} = \inf_{k \ge j+p} \left\{ \frac{\left(c+p\right) \left(\frac{k}{p}\right)^{n} \left(k-p-\beta\right) \left(1+\lambda \left(\frac{k}{p}\right)^{m}-\lambda\right)}{\beta \left(c+k\right)} \right\}^{\frac{1}{k-p}}, \tag{25}$$

the result is sharp.

Proof: Let $G(z) = z^p + \sum_{k=j+p}^{\infty} h_k z^k = \frac{c+p}{z^c} \int_0^z s^{c-1} f(s) ds$ so

$$f(z) = z^p + \sum_{k=j+p}^{\infty} \left(\frac{c+k}{c+p}\right) h_k z^k, \qquad c > -p.$$

Thus it is enough to show that $\left| \frac{f'(z)}{z^{p-1}} - p \right| \le p$, $|z| < r_4$. But

$$\left| \frac{f'(z)}{z^{p-1}} - p \right| = \left| \sum_{k=i+p}^{\infty} k \left(\frac{c+k}{c+p} \right) h_k z^{k-p} \right|,$$

then

$$\sum_{k=j+p}^{\infty} \frac{k}{p} \left(\frac{c+k}{c+p} \right) h_k |z|^{k-p} \le 1.$$
 (26)

Since $G(z) \in T(\lambda, \beta, m, n, p, j)$ by (9) we have

$$\sum_{k=j+p}^{\infty} \frac{k \left(\frac{k}{p}\right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right)}{p\beta} h_k \le 1.$$

Therefore (26) will be true if

$$\left(\frac{c+k}{c+p}\right)|z|^{k-p} \leq \frac{\left(\frac{k}{p}\right)^n (k-p-\beta) \left(1+\lambda \left(\frac{k}{p}\right)^m-\lambda\right)}{\beta}$$

Copyright to IJARSET <u>www.ijarset.com</u> 10353

International Journal of Advanced Research in Science, **Engineering and Technology**

Vol. 6, Issue 8, August 2019

or

$$|z| \leq \left\{ \frac{(c+p)\left(\frac{k}{p}\right)^n (k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^m-\lambda\right)}{\beta(c+k)} \right\}^{\frac{1}{k-p}}, (k \geq j+p; p, j \in \mathbb{N})$$

and this proves the result. Sharpness of this theorem follows if we put

$$f(z) = z^{p} + \frac{p\beta(c+k)}{k\left(\frac{k}{p}\right)^{n}(k-p-\beta)\left(1+\lambda\left(\frac{k}{p}\right)^{m}-\lambda\right)(c+p)}z^{k}, \qquad (k \ge j+p; p, j \in \mathbb{N}).$$
Theorem (12): Let $f(z) \in T(\lambda, \beta, m, n, p, j)$, then the integral operator

$$F_{\gamma}(z) = (1 - \gamma)z^p + \gamma p \int_0^z \frac{f(s)}{s} ds \quad (\gamma \ge 0, \ z \in U), \tag{28}$$

is also in $T(\lambda, \beta, m, n, p, j)$ if $0 \le \gamma \le \frac{j+p}{p}$.

Proof: If $f(z) = z^p + \sum_{k=j+p}^{\infty} a_k z^k$, then

$$F_{\gamma}(z) = (1 - \gamma)z^{p} + \gamma p \int_{0}^{z} \left(\frac{s^{p} + \sum_{k=j+p}^{\infty} a_{k} s^{k}}{s} \right) ds = (1 - \gamma)z^{p} + \gamma p \left(\frac{1}{p} z^{p} + \sum_{k=j+p}^{\infty} \frac{a_{k}}{k} z^{k} \right)$$

$$=z^p+\sum_{k=i+p}^{\infty}\frac{\gamma p}{k}a_k\,z^k=z^p+\sum_{k=i+p}^{\infty}g_k\,z^k,$$

where $g_k = \frac{\gamma p}{k} a_k$. But

$$\sum_{k=i+p}^{\infty} k \left(\frac{k}{p}\right)^{n} (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^{m} - \lambda\right) g_{k} = \sum_{k=i+p}^{\infty} k \left(\frac{k}{p}\right)^{n} (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^{m} - \lambda\right) \frac{\gamma p}{k} a_{k}$$

$$\leq \sum_{\substack{k=j+p}}^{\infty} k \left(\frac{k}{p}\right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right) \frac{\gamma p}{j+p} a_k$$

$$\leq \sum_{\substack{k=j+p}}^{\infty} k \left(\frac{k}{p}\right)^n (k-p-\beta) \left(1 + \lambda \left(\frac{k}{p}\right)^m - \lambda\right) a_k \left(since \frac{\gamma p}{j+p} \leq 1\right) \leq p\beta.$$

So the proof is complete

REFERENCES

- R. Agarwal , J. Gupta and G. S. Paliwal, Geometric properties and neighborhood results for a subclass of analytic functions defined by convolution, International Bulletin of Mathematical Research, 2(4)(2015), 5-15.
- [2] M. K. Aouf and A. O. Mostafa, Certain classes of p-valent functions defined by convolution, General Math., 20(1) (2012), 85-98. M. K. Aouf, A. O. Mostafa and A. A. Hussain, Certain subclass of p-valent starlike and convex uniformaly functions defined by convolution, Int. J. Open Problems Compt. Math., 9 (1) (2016), 36-60.
- W. G. Atshan and N. A. J. Al-Ziadi, On a New Class of Meromorphic Multivalent Functions Defined by Fractional Differ-integral Operator, Journal of Kufa for Mathematics and Computer,
- W. G. Atshan and N. A. J. Al-Ziadi, A New Class of Meromorphic Univalent Functions Defined by Linear Derivative Operator, European Journal of Scientific Research , 146(1)(2017), pp: 83-92.
- L. E. Littlewood, On inequalities in the theory of functions, Proc. Londan Math. Soc., 23 (1925), 481-519.
- S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics Vol. 225, Marcel Dekker, New York and Basel, (2000).
- G. S. Salagean, Subclasses of univalent functions, Lecture notes in Math., Springer-Verlag, 1013, 1983, 362-372.