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ABSTRACT: A mathematical model and a parallel computational algorithm for solving the problem of gas filtration in 

porous media for arbitrary regions are presented. The proposed algorithm is based on the replacement of differential 

operators by a finite-difference conservative scheme, and the resulting systems of linear algebraic equations are solved 

by the Gauss method. This parallel algorithm provided a 20-fold acceleration of calculations on a multiprocessor 

cluster when solving the problem of gas filtration in porous media. 
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I.INTRODUCTION 

 

During numerical integration of problems of mass transfer in porous medium, which are described by multidimensional 

systems of partial differential equations with lumped and distributed parameters there is a necessity to multiply solve of 

tri- or five-diagonal systems of linear algebraic equations (SLAE) with a constant coefficient matrix different right-

hand sides. 

 
II. LITERATURE SURVEY 

 
Many scientists from different countries are involved with the solution to these problems, and to date they have 

produced significant results of fundamental and applied nature. 

 

Particularly, the study [1] is devoted to the latest advances in the development of a continuous approach to the 

modeling of the dusty gas flow in isotropic porous structures. Over the past fifty years this approach has attracted 

considerable attention due to the need to develop models of the dusty gas stream that can describe different phenomena, 

including in relation to the subsurface transport of dissolved or suspended solids, structures of liquid-dust separators, 

analysis and design of filtration systems. To date developed a number of models for the gas particles flow through 

porous media, taking into account, as the behavior of a macroscopic flow and microscopic interactions that arise from 

the porous microstructure. A detailed study of porous microstructures leads to better understanding the interaction 

between the involved phases and the strength of the porous matrix, acting on the fluid phase. Models dusty gas flow 

and particle transport in porous structures are characterized by a mathematical idealization porous microstructures. 

 

In [2], the results of numerical modeling of gas flow in a porous medium initially saturated with gas and water, 

accompanied by the formation of gas hydrate. It is shown that depending on the parameters of the environment at the 

outer edge (permeable or impermeable to gas flow) of hydrate formation may occur only once on the front edge and in 

the extended region. 

 

K.Yu. Bogachev [3] proposed a mathematical model of fracturing that occurs around wells during hydraulic fracturing 

or when injection pressure is exceeded. A computational algorithm for solving the problem is developed for the hybrid 

MPI platform. The results demonstrate an acceleration of more than 50 times, compared with a sequential algorithm. 

The results obtained by the author can be used in the numerical solution of hydrocarbon feedstock development 

http://www.ijarset.com/


      
         

        
ISSN: 2350-0328 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 6,  Issue 12 , December 2019 

Copyright to IJARSET                                                           www.ijarset.com                                                                      12130 

 

 

problems, as well as in solving other systems of partial differential equations on high performance computing (HPC) 

systems. 

 

D.N. Morozov et al. [4] discussed the problems of using hybrid computing systems of ultrahigh performance for 

solving problems of mathematical physics. The authors describe a software package for modeling multiphase filtering 

processes that allows revealing full potential of high-performance systems based on graphic accelerators. On the 

example of test calculations of leakage problems, it was shown that the logical simplicity of the proposed 

computational algorithms and the method of software implementation provide high acceleration of calculations. 

 

An explicit algorithm constructed by the analogy with the kinetically-consistent difference schemes was proposed in 

the paper [5] which discusses solving of three-phase filtration problems. The filtration model includes the energy 

equation and allows taking into account possible sources of heat emission. Parallel implementation is directed to HPC 

systems based on graphics accelerators. The computational domain decomposition was optimized to additionally speed 

up the calculations. 

 

A.V. Tsepaev [6] solved the problem of multiphase fluid filtration in the presence of wells. The author presented 

algorithms based on the methods of tasks decomposition for implementation on HPC system that combines the power 

of the CPU and GPU using MPI. 

 

The paper [7] is devoted to the methods of solving three-phase fluid flow problems in the reservoirs. It was assumed 

that in domain with high velocities Darcy’s law is violated and a nonlinear filtration law was used. The methods for 

solving three-phase flow problems in porous media with a nonlinear filtration law based on the decomposition methods 

were proposed. The proposed methods were implemented on the heterogeneous HPC system. 

 

Depending on substance filtering area and integration step of spatial integration procedure the order of matrices can 

range from hundreds to millions. Thus, in case of large-scale systems the solving is required considerable computing 

resources. Therefore, the problem of development of efficient parallel computing algorithms does not lose its relevance. 

 

III. STATEMENT OF THE PROBLEM 

 

To solve above mentioned problems, we consider the continuity equation for the area G, not including the wells: 

( ) ( ) ( )x y m
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Where Q  - volumetric flow rate (at atmospheric pressure) in the wells of tasks, Q - mass flow, atP  - atmospheric 

pressure,  - the density, b – power of the stratum, 
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Substituting equation (3) in (2) and taking into account the variability of the capacity of the reservoir will get: 
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where b - the average power value in the "square", ,k   - respectively the filtration coefficient and viscosity of the gas, 
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We assume that the gas is ideal and we obtain [12-15]: 
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Equation (5) is valid for any law of filtration and any dependence on the density of the pressure. 
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If in the equation (5) all coefficients are constant, i.e., , ,k const const  ,b const m const  , we obtain the 

well-known equation Leybenson 
2 2 2 2
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To carry out numerical experiments on a computer, using the equation: 
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we give the dimensionless form to the equation (6): 
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To solve the formulated problem to the equation (7) we add initials, boundary and internal conditions: 
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As can be seen it is quite difficult to get the analytical solution of this problem. 

 

IV. SOLUTION METHOD 

 

One of the effective methods for solving this problem is to replace the differential operators in equation to finite-

difference conservative scheme.Using the finite-difference approximation, we will get a SLAE in the end. After solving 

this SLAE the gas-dynamic parameters of an object can be determined.To do this we will introduce a uniform grid in x 

and y: 
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then using the scheme of longitudinal-transverse directions by iox , ioy  and linearizing nonlinear terms of finite-

difference equation we will obtain [12-15 ]: 
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Here 
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After all we will get a SLAE mentioned below 

11 ,А x b       (12) 

where are 1А - tridiagonal matrix with ( * )N J  dimensionality and 1b  - vector with  J  dimensionality:  
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Applying the above procedure by 0y direction, we will obtain similar system of algebraic equations: 

22А x b .      (13) 

Thus, to solve this two-dimensional problem of gas filtration in porous medium, we have to solve the SLAEs obtained 

by x and y. 

 

Like most algorithms for solving complex problems, considered algorithm is a combination of fragments with various 

degrees of parallelism, that is alternately sequential-parallel. Inside the program code only the most resource-intensive 

sections undergoes for parallelization, in this case it is SLAE solving. 

 

So, the next step is the Java implementation of Gaussian parallel algorithm for solving SLAE (12), (13). The FastMPJ 

[8], which corresponding to specification of mpiJava 1.2 [9] implemented for interprocessor communication. 

 

The initial matrix of coefficients is distributed on p processes by cyclic horizontal strips with strip width in one row. In 

each process numbered pid are allocated strips with numbers pid, pid + p, pid + 2p etc. This line-cyclic scheme 

involves changing per one the number of process at passage from current to next line. Applying this scheme solves the 

problem of balancing the computational load. It reaches roughly the same amount of computation on each processor 

and reduced downtime in difference from line-sequential scheme, when at the same data distribution, each successive 

iteration increases the number of idle processes [11]. 

 

For operating over elements of original matrix (two-dimensional array), it transforms into one-dimensional array, that 

is related to Java runtime environment features. Positions of rows in this one-dimensional array are defined by a stack 

of offset values with interval equals to number of elements in row - n. 

 

The parallel Gaussian algorithm for solving SLAE can be divided into two parts [11]. The first part – «forward 

elimination» makes use of elementary row operations and transforms a given matrix to upper triangular form. There are 

(n-1) iterations to eliminate unknown quantities. The second part – «back substitution» continues to use row operations 

until the solution is found. It puts the matrix into reduced row echelon form. 

 

At the beginning of «forward elimination» with i, 0 ≤ i< n-1 iteration is chosen leading row, which determined by 

principal-element method using the search of string with the largest value of elements in i column corresponding to 

eliminated variable xi. Since the rows are distributed across processes, to find the maximum value the process 

numbered pid>i makes exchange items they hold. After collecting all the data in each process it can be determined 

which of processes contains the leading row and what value is principal element. 
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To continue calculation the leading process sends its row of matrix and the appropriate part of vector b to all other 

processes numbered pid>i. After receiving the leading row, processes makes rows subtract using of elementary row 

operations, thus provide elimination of appropriate unknown xi. 

 

At the «back substitution» the processes perform necessary calculations to find values of the unknowns. Once any 

process i, 0 ≤ i< n-1determined the value of its own variable xi, it sends this value to all other processes numbered 

pid<i. Then the processes makes substitute of received value and performs update of values for the elements of vector b. 

 

V.DISCUSSION 

 

The testing was carried out on a cluster built on the basis of PC connected through Ethernet. 

 

Although considered algorithm assumes an optimal load balancing between nodes, the total time has been significantly 

influenced by the time required to make data transfer between processes. In the above line-sequential scheme of data 

distribution during the calculations the number of idle processes increases, but it respectively reduces the number of 

transfers, that partly compensates uneven computational load. In our case, the number of transfers is always kept on 

maximum. Therefore, the efficiency of considered algorithm is shown when order of the initial matrix above 400x400, 

i.e. when the time for data transfer becomes less significant compared to time spent straight for calculations. 

 

This is leads to keep some compromise between desired speedup and efficiency [10], i.e., to preserve conformity 

between dimensionality of problem and number of involved processors. An undue increasing number of processes is 

slowing down the speed of calculations. 

 

VI.CONCLUSION 

 

Thus, it can be noted that parallelization of most resource-intensive stages in solving of problems of mass transfer in 

porous medium is significantly more efficient in general. 

 

In the course of the calculation using considered algorithm there is efficiently to use the number of processes equals to 

number of CPUs or cores on each cluster node. For example, if a solution of n dimension problem is optimally to 

divide onto eight processes, so it should be used 4 CPUs (dual-core processors) to run the program. 

 

Although the using of line-cyclic data distribution scheme is more appropriate for dense matrix cases, the efficiency of 

considered algorithm remains equally for tri- or five-diagonal matrices. 
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