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ABSTRACT: The article proposes a procedure for formalizing mathematical models of control objects with uncertain 

parameters. The basic definitions are given on stability analysis, root localization and the application of simplified 

criteria for resistance to polynomials, the coefficients of which can take any value from given intervals. Algorithms for 

stability analysis of controlled systems with uncertain parameters are proposed. 
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I. INTRODUCTION 

 

In order to provide linear and nonlinear control systems of continuous technological objects of such properties as high 

accuracy, stability and reliability, when designing it it is necessary to take into account the possibility of deviation of 

the real parameters of the control object from the nominal values under the influence of various destabilizing factors. 

The latter include, for example, vibrations, equipment defects, measurement errors, aging and wear of individual 

elements of the system, changes in operating modes, fluctuations in temperature, humidity, pressure. Usually, the 

calculation of the parameters of control systems is performed on the basis of a simplified mathematical model that 

roughly describes the real physical process and has undefined parameters, for which only the boundaries of the ranges 

of change are known. Therefore, one of the important problems arising in the design of control systems is the problem 

of stability analysis in the conditions of uncertainty of parameters, which is one of the key factors that guarantee the 

applicability of models and reliability of the designed systems. In fact, the results obtained in the theory of stability in 

the conditions of uncertainty of parameters allow to ensure the dynamic safety of controlled systems at the stage of 

their design and operation. 

 

II. RELATED WORK 

 

This problem was first considered by Faedo [1] in 1953, which introduced sufficient conditions for the stability of a 

family of polynomials in a form close to the Routh table. Applying the Routh criterion to the interval polynomial and 

performing all the operations of interval arithmetic, two Routh tables (lower and upper) are obtained. The positivity of 

the lower bounds for the first column guarantees the stability of the family of polynomials. 

 

The fundamental results that determine the necessary and sufficient conditions for the asymptotic stability of the 

interval characteristic polynomial were obtained by Kharitonov [2]. They are contained in the statements of two 

theorems, called the weak and strong Kharitonov theorem, respectively. The proof of these theorems was constructed 

by the author on the basis of induction on. It should be noted that in the future a simpler and more obvious proof of a 

strong theorem was proposed, using an analysis of the properties of interval polynomials in the frequency domain [3]. 
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An analysis of the scientific and technical literature of recent years concerning research on the development of interval 

methods for analyzing the stability or instability of control systems for continuous technological objects, indicates the 

achievement of significant theoretical and practical results in this area. 

At the same time, the literature does not sufficiently assess the capabilities of interval methods in the problems of 

analysis and study of the asymptotic stability of interval control systems for continuous technological objects. 

Algorithms for the analysis of robust stability of interval control systems also require their development. This is due to 

the fact that no constructive methodology has been developed to create analytical and computational methods for 

studying the stability and instability of control systems for continuous technological objects under conditions of 

interval-parametric uncertainty. 

II. FORMULATION OF THE PROBLEM 

In the theory of automatic control, two main types of mathematical models of objects are widely used - models in 

physical input-output variables and models in state variables. Parametric uncertainty can be linked to both of these 

kinds of models in various ways. These methods have one and the same physical meaning, one or another of its 

mathematical interpretations allows the use of various methods for solving problems and, as a result of this, to obtain 

results that differ in practical orientation. 

The greatest variety of methods for introducing parameter uncertainty exists for models in state variables. Most often 

[4] the following object is investigated: 
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where nx  - dimensional state vector, ru  - dimensional control vector,  
1
ry  - dimensional vector of measured 

variables, t  - independent variable (time), 
000

,, CBA - numerical matrices matched with vectors of yux ,,  sizes, 

characterizing the nominal (calculated) mode of the object,  CBA  ,, - matrices, matching in size with matrices  

000
,, CBA and containing indefinite elements. 

One way to describe the uncertainty of object parameters is to introduce the dependence of matrices  CBA ,,

on a vector or scalar parameter q , limited by two-sided inequality 
maxmin

qqq   [5]: 
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Dimension  of vector parameter q   is equal to the number of independent indefinite parameters in matrices 

CBA ,, . If in this case the nominal mode 
0

q  is set, then an intermediate model between (1) and (2) can be obtained [6] 
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nq  - dimensional vector. If the matrices CBA  ,, depend on 
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then (3) can be represented as 

).()(

),()()(

)(

3
1

0

)(

2
1

0

)(

1
1

0

3

21

txqCCty

tuqBBtxqAAtx

i
n

i
i

i
n

i
i

i
n

i
i








































    (4) 

The most common way to set the uncertainty in solving practical problems is the numerical interval. 

Indeed, ignorance of the exact numerical value of the physical parameter q is easier and more natural to 

describe in the form 

],,[ qqq  
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where q is the lower boundary, q  is the upper boundary of the interval q  ( qq, -know numbers). 

In this case, a parametric indefinite object has a model (2), in order to emphasize the interval character of the 

uncertainty of parameters, we introduce the following notation 

)()()()()( tuBtxAtx 


qq .     (5) 

If matrices )(),( qq BA depend on different elements of interval vector q , then they are interval matrices 

 

III. SOLUTION OF THE TASK 

 

So, we have the following model, which describes the dynamics of the object in a first approximation  

    )()()( tubtxAtx  qq ,      (6)  

where ntx )(  is the dimensional state vector, )(tu  is the scalar control, 
τ

qqqq
21

 is the dimensional 

row vector of the indefinite parameters of the object, nnA )(q  is the matrix depending on the uncertain 

parameters, nb )(q is the dimensional vector depending on the uncertain parameters. 

Matrix A  and vector b can depend both on all ),1( i
i

q  and on separate elements of vector q , and the 

dependence can be linear or nonlinear. Once again, we note that a record of the form (6) is symbolic; it shows that a lot 

of linear continuous stationary objects are considered, each of which is obtained with an arbitrary set of parameters 

qq . For vector q , we will use record  qq ,q , where by q  we mean a real vector made up of the lower 

boundaries 
n

qqq ,...,,
21

, and q  means a real vector made up of the upper borders 
Г

qqq ,...,,
21

 of the 

corresponding given intervals. 

Since the implementation of control law x(t)ku(t)   can be carried out only with some tolerances on the 

coefficients, it is proposed to consider it in the form 

)()( txtu k ,   (7) 

where  

),1(],[ njkkk jjj
                              (8) 

jk and jk  - are the desired numbers. 

The task of the synthesis of controllers is to find the vector  k of the control law (7) with constant coefficients 

and maximum tolerances (8) on them so that for any combination of parameters  ),1( riq
i

 and ),1( njk
j

 the 

poles of the closed system (6), (7) are located in the desired region   of the left half of the complex plane, having the 

form of a trapezoid with given 
*** ,,  . 

The modal control method consists of two main stages: 

- wording of the system requirement in the form of a distribution of the roots of a closed system on a complex 

plane or setting the coefficients of the desired polynomial; 

- solving a system of linear equations obtained by equating the coefficients of the characteristic polynomial, 

written as functions of the parameters of the object and the regulator, to the numerical values of these coefficients 

obtained in the first stage. 

So, we have a model of the object 

)()()( tubtxAtx  ,      (9) 

where the designations of the quantities included in it correspond to model (6), but do not contain undefined parameters. 

The law of control is sought in the form 

)()( txktu  ,        (10)  

where k  is a row vector of size n  with real coefficients. 

The characteristic equation of the closed system “object (9), controller (10)” has the form 
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where E  is the identity matrix of size n ; )( AEsadj  - matrix attached to )( AEs ;  

)det()( AEssd  - characteristic polynomial of an object; S  - the symbol of the Laplace transform with zero 

initial conditions (hereinafter also understood as the symbol of differentiation with respect to t ). 

We bring it to a common denominator and introduce the notation 

0)()()(  sdbAEsadjkS .                                    (12)  

)(S is nothing more than an analytical expression of the characteristic polynomial of the closed system in question 

through the parameters of the object and the coefficients of the controller. 

The requirements for the system can be formulated either by specifying the desired distribution of the eigenvalues of 

the matrix of the closed-loop system on the complex plane, or by the method of standard coefficients of the 

characteristic polynomial. In the case when the system has zeros, preference is given to the first method of specifying 

requirements since it allows to take into account the influence of these zeros on dynamics to some extent by rational 

choice of poles. If we denote by 
n

 ,....,,
21

 the desired poles (complex conjugate or real numbers), then the 

polynomial can be written as 

n

nnn

n
SSSSSS   ...))....(()( 2
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Coefficients ),1( n
y

   are easily determined by multiplying the simplest factors on the left side and by 

grouping the terms at equal powers of S . In numerical specification 
n

 ,....,,
21

, values 
n

 ,....,,
21

 are also 

numbers. 

At the same time, expression (12) can be written as follows 

,                (14)   

where the notation ),1(),,( nkba
jiijy

   shows that the coefficients of the polynomial are functions of the 

parameters of the object and the regulator. The form of these functions is determined by the structure of matrix A  and 

vector b . In the general case, these functions are nonlinear, but always linear in ),1,( nji  . 

Equating the coefficients of the polynomials (13) and (14) for equal powers of S , we obtain a system of algebraic 

equations 


njiijnjiijjiij

kbakbakba  ),,(.........,),,(,),,(
2211
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 Due to the linearity of functions ),,(
jiijy

kba  through 
j

k , system (2.26) can be written in matrix form 

 dkP  , where k - is the transposed vector of the desired controller coefficients (column vector), we omit the 

transpose sign below to simplify the notation,  

nnnlbaPP
iijl

 ),1,(),( 


is the matrix of the corresponding structure;  

),1()(dd na
ij

 


 is a column vector composed of coefficients of the characteristic polynomial;  

),1( n 


is a column vector composed of coefficients of the desired characteristic polynomial of a closed 

system. 

Since, in the case of precisely known object parameters, the quantities ),1,(, njiba
iij

  are real numbers, the 

matrix D  and the vector d  are numerical. Then system  dkP  is easily reduced to 

hkD  ,       (16)  

where h  is found by the usual rule of subtracting vectors 

   dh  .                                                                (17)   

System (16) has a solution calculated by the formula 

hDk  1
   (18)   
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provided that matrix P  is non-degenerate, i.e. its determinant is non-zero 

0det P .       (19)  

Since there are no restrictions on choice  , it follows from [8] that condition (19) is satisfied when pair 

),( bA  is completely controllable 

Thus, if the object does not contain indefinite parameters and is completely controllable, then the problem of 

synthesizing a controller that provides the desired arbitrary arrangement of the poles of a closed system is reduced to 

calculating the coefficients of polynomial (13), matrix P , vector d , and then to solving a system of linear algebraic 

equations (15) by formulas (17), (18). 

Since the characteristic polynomial of a closed system coefficients are functions of the parameters of the 

controller and the object, then with the uncertainty of the latter, the considered coefficients will also be uncertain. If the 

parameter uncertainty is interval, then according to the interval analysis, polynomial (12) will have numerical intervals 

as coefficients. Each set of parameters qq  (a certain point in the space of the object’s parameters) will correspond 

to a certain characteristic polynomial of a closed system (let's call it point), whose coefficients will be numbers (points) 

belonging to the corresponding intervals of polynomial (14). Thus, the intervals ),1(
i

ri q  possible values of the 

parameters of the object (16) are displayed using functions  ),,(
iiij

kba


 of (14) according to the rules of interval 

analysis in intervals ),1(Δ n


 of the polynomial 

n

nnn SSSS Δ......ΔΔ)(Δ 2
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1
  .    (20) 

It is clear that each point characteristic polynomial of a closed system corresponds to a well-defined 

distribution of roots 
n

ppp ,......,,
21

, and that when the set of parameters is changed, the numbers ),1( nip
i
  change. 

It is appropriate to recall here that this effect is used to construct the root hodograph when one parameter in the object 

changes in a given interval. If there are more than one such parameter in the object, and they change inconsistently with 

each other, then the numbers ),1( nip
i
  occupy some areas on the complex plane. 

The main idea of solving the modal control problem for objects with indeterminate parameters using interval 

mathematics is based on the property of monotonicity for the inclusion of interval polynomials [11]. The essence of this 

property for this particular case is that if the set of roots of some interval polynomial 


)(ΔS  occupies a certain region 

  of the complex region, then any other interval polynomial 


)(ΔS  of the same order as whose coefficients satisfy 

the inclusions 




 nn

Δ,...,Δ,Δ
2211

ΔΔΔ     (21)  

has a root location  such that 

      (22)  

Sign   means the set-theoretic non-strict inclusion [9,10]. 

In relation to the numerical intervals from (21), it is interpreted as follows: 

),1(, niiiii    

The monotonicity of the inclusion of interval polynomials suggests that for the case of uncertain parameters, 

the modal control problem can be solved in two stages: 

- an interval polynomial 


)(ΔS  is constructed according to the desired region  of the location of the roots 

of the closed system; 

- vector k  is calculated so that polynomial (20) satisfies (21). 

The last stage, as already mentioned, is not always solvable. However, the first stage causes certain difficulties. 

Within the interval approach, it would be convenient, at first glance, to specify the localization regions in the form of 

intervals separately for the real and separately for the imaginary parts of the roots of the polynomial, and then, using 

formula (13), find its coefficients. 

Consider the ATS, consisting of an object described by formulas (6) - (7). 

It is required to determine whether the ATS remains stable for any set of values of the object and controller 

parameters from given intervals (8). In solving this problem, we will adhere to the following classical methodology, 

applying it to interval matrices. Substituting (7) into (6), a homogeneous vector-matrix equation is formed 


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)()( txtx G


,                                                     (22) 

where the square-sized  n  interval matrix ],[ GGG  is calculated by the formula 

 

BKAG                                                 (23) 

 

and is called a closed system matrix. The stability (22) can be judged by the coefficients of the polynomial of the  n st 

degree 

)det()( GΔ  Ess ,                                              (24) 

where s  is a complex variable, E  is a unit nn  matrix. The polynomial (24) will be called the interval 

characteristic polynomial of the closed system. 

Thus, the problem of stability analysis is solved in three stages: 

1 stage - the formation of a matrix ],[ GGG  of a closed system, 

2 st  stage - the calculation of the coefficients interval characteristic polynomial closed system, 

3 st  stage - the analysis of the stability of interval characteristic polynomial closed system. 

Consider the 1st stage of solving the problem. We introduce the following notation for interval matrices: 

),1,.1(,,, rjniqQqQ
ijijij

 qQ . The set of numerical matrices 

}|{}{ BKAGGGD   is denoted by ),,,,,( KKBBAAD , with 
ijij

aa   or ijij
aa  , 

 ii
bb  or  ii

bb  , 

jj
kk 

 or  jj
kk  , ),1,,1,( rnji   . The coefficients of matrix 

DG  are denoted by ),1,(, njig D

ij
 . 

Matrices G  and G  are composed of coefficients of matrices belonging to ),,,,,( KKBBAAD , with 

D

ij
Gij

gg
D

min , D

ij
G

ij
gg

D
max , ),1,( nji  . Indeed, it follows from the structure of matrix G  that each function 

ij
g  

has the form 



r

iiijij njikbag
1

),1,(



, that is, does not contain the same interval variables. 

The above relations outline the following method of obtaining matrix G , bypassing interval arithmetic: you need to 

calculate G  for all possible combinations of boundaries 
iiij

kba


,,  and choose the minimum and maximum 

values for each coefficient 
ij

g . 

If A , B К    contain   interval elements, then 
2  matrices 

DG  are subject to calculation. 

The second stage of solving the problem is to calculate the intervals of the values of the interval characteristic 

polynomial closed system coefficients. Let be 
D

n

D

n

nDnD ssss ΔΔΔΔ 




1

1

1
...)(  

is the characteristic polynomial of matrix ),,( GGDGD   where 

 ),1,(or  |),( njiggggGGGD ijijijij

D   

nn

nn ssss 




1

1

1
...)(  

 

is the characteristic polynomial of matrix GG , 

),1(max,min niD

i
G

D

i
D

i
G

D

i DD
  ,  ),1(max,min ni

i
G

ii
G

i       . 

Then according to the result [7]: 
D

ii

D

ii  , . 
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IV. CONCLUSION 

 

Thus, in order to calculate the interval characteristic polynomial closed system by matrix G , it suffices to 

calculate the characteristic polynomials for all matrices from the set ),,( GGD  and choose the minimum and 

maximum values for each coefficient ),1( ni
i

 . 

At the third stage of solving the problem, the stability criteria for interval polynomials given in [9] are applied. 

In the first two stages, calculations are performed using interval-arithmetic operations. The last stage 

implements the necessary and sufficient stability criterion for interval polynomials. Note that even with a small number 

of uncertain parameters in the automatic control system, the solution of the stability analysis problem without the use of 

interval mathematics requires significant computational costs. 
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