

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8367

Design and implementation the signature

provider of the algorithmO’zDst1092:2009

Mersaid M. Aripov, Ruhillo H. Alaev

Professor, Department of Applied mathematics and Computer Analyses, National University of Uzbekistan, Tashkent,

Uzbekistan

Research scholar, Department of Cyber security, National University of Uzbekistan, Tashkent, Uzbekistan

ABSTRACT:Electronic digital signature technology is widely used for ensuring the integrity and identification of the

owner of an electronic document. Presently in Uzbekistan, tools and methods that allow using digital signature

algorithm O’zDst1092:2009 do not provide document signing, signature validation and key management, through

standard interfaces such as CryptoAPI, Cryptography Next Generation API and PKCS#11. This raises the problem of

using the O’zDst1092:2009 algorithm by many information systems, such as working with digital certificates which

was generated using the O’zDst1092:2009 algorithm. This article discusses the method of the O’zDst1092:2009 digital

signature algorithm implementation in Windows. A model of the signature provider, a review of the mathematical

functions of the algorithm O’zDst1092:2009, as well as a description and implementation of functions of the signature

provider will be presented.

KEY WORDS: digital signature, Cryptography Next Generation API, signature provider, O’zDst1092:2009 signature

algorithm, key pair generation.

I.INTRODUCTION

Signature providers are used for working with digital certificates, document signing and signature verification in

windows. Starting with Windows Vista, Microsoft offers a new Cryptography Next Generation API (CNG API)[11],

which provides performing cryptographic operations for applications. CNG API also offers a mechanism for

implementing the new cryptographic algorithms into the Windows. For each algorithm, a CNG provider is created and

registered. Registration makes the CNG provider available for use with applications. To implement the signature

algorithm in Windows, the signature provider is created and added to the list of signature function providers.

This paper discusses applying signature algorithm through the design and implementation of the signature provider of

the O’zDst1092:2009 algorithm. The O’zDst1092:2009 standard includes 2 digital signature algorithms. The first

algorithm of the standard O’zDst1092:2009 was implemented in the signature provider. The architecture of the

signature provider is shown in Fig. 1.

II.RELATED WORK

Research in this area has been published by many scientists from around the world. They were engaged in software and

hardware implementations of digital signature algorithms such as RSA, DSA, ECDSA, GOST R 34.10-2012.In [1] the

use of new cryptographic algorithms through CryptoAPI, which is already in the newly developed information systems

are rarely used, was presented. A review of Microsoft's next-generation providers and the analysis of their supporting

algorithms, types of providers were discussed in [2]. From [2] found out that CNG providers installed by default in

Windows do not support signature algorithm O'zDSt1092:2009. The design and implementation of the key storage

provider, which provides management keys' life cycle, was discussed in [3]. However, the design and implementing of

the signature provider is not discussed. The analyze possible security vulnerabilities on the CNG library was provided

in [6], analyze the key storage mechanism of the CNG library is discussed in [5]. The structures, features, and

programming techniques of CNG API, security issues of CNG API are introduced in [4]. The implementation of

elliptic curve-based digital signature algorithms was presented in [7-10].

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8368

Therefore, in our opinion, given the above mentioned importance, there is a need for research and implement of the

CNG provider which perform cryptographic operations with the new cryptographic algorithms.

III. THE SIGNATURE ALGORITHM O’ZDST1092:2009

The following constants were defined for algorithm:

1.2.860.3.15.1.1.1.1 – OID of the first algorithm of the standard O’zDst1092:2009

1.2.860.3.15.1.1.1.1.1 – OID of parameters of the first algorithm of the standard O’zDst1092:2009

“O'zDSt1092:2009 Alg1” – signature algorithm name

“ARH Primitive Provider” – signature provider name

Signature interface

ARH Primitive Provider (arhprimitive.dll)

Signature algorithm O z DSt 1092:2009

Applications

CNG API (bcrypt.dll)

Signature router

A
p

p
li

ca
ti

o
n

L
a

y
er

C
N

G
 A

P
I

L
a

y
er

C
N

G
 P

ro
v

id
er

L
a

y
er

Generate private and public keys

Export and Import private and public keys

Calculate signature

Verify signature

Random number

generation

Fig. 1. The architecture of the signature provider

Mathematical functions

The following auxiliary functions were implemented for performing the operations specified in the algorithm:

The function BN_xpR_mod_sqr(x,p,R) calculates with parameter R.

The function BN_xypR_mod_mul(x,y,p,R) - multiplication with parameter R modulo p, calculates

with parameter R.

The function BN_xepR_mod_exp(x,e,p,R) - the e-th power of X with parameter R modulo p, computes)

with parameter R. For example, for

Pseudocode of function:

 bitsCount – bits count of е;

tmp1, tmp2, tmp3, i – integer numbers, at the beginning they are equal to zero

b[i] – i-bit of number е

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8369

WHILE i<bitsCount

 if b[i] =1

 {

 r=BN_xypR_mod_mul(tmp1, tmp3, p,R)

tmp1= r

 }

 tmp2=BN_xpR_mod_sqr(tmp3, p,R)

tmp3=tmp2

Increment i

ENDWHILE

 return r

Public and private key pair generation

a) Generating the pair 256-bit random numbers (x, u) – private key.

q = 0xA071C130A16485B29F52B17B952D1F590D758E62365494053BD0C1E71EE73011

b) Computing (y, z) – public key, x and y are both 1024-bit numbers:

p=0x1F84F3905B873C8B305375882F2EF26B346EFD236F20C76070AE1FB02EF773CD37DF3AA46463A97FADF

E7672D53C6C53897C6D7A2C4255B5AA470AA3D0CD50FA5392D064BBFB6D7CEFB765B3266D264E3DF1811

C651A0E344957C154037048E5B24D9B9B67D684573EA08A242699C47A49DF55FD77B0DA4B449B37806CEDB

F23

g=0x17B2927E70164CA06026C34C6A93DB2B6DFA0C90C981867DAE4F88E058D8DDD5E03FA615F1C667CC

DB79641B0E4177499CFBE4393CB0EFC15994DD50B70A67DDC8CFA6DD2C9AD3CC844E90A9BE39679DC86

EFAAA21BF149F48916C4DBC3C8E7334B01C2636617E30A299BA8C4544B6C7DB895042CD7A04F7E8D6D202

89C83958

y= BN_xepR_mod_exp(g,x,p,R)

x= BN_xepR_mod_exp(g,u,p,R).

IV. DESIGN AND IMPLEMENTATION

Implementation of the digital signature algorithm O’zDSt1092:2009

The algorithm implementation has two main functions:

1) Digital signature calculation function: SignAlg1(IN private key(x,u), IN hash value, IN µ-signature modeµ∈{1,

0}, IN control key R1, IN values of the parameters {p,q,R,g}, OUT signature, IN OUT signature length). The

SignAlg1 function takes as input parameters the private key (x, u), a hash value, a signature mode, a control

key, and calculates the signature based on these parameters. A block diagram of the signature calculation is

shown in Fig. 2. For the mode with the session key µ = 1, and for the mode without the session key µ = 0.

2) Digital signature validation function: VerifyAlg1(IN public key(y,z), IN hash value, IN µ-signature mode, IN

control keyR1, IN values of the parameters {p,q,R,g}, IN signature, IN signature length). The VerifyAlg1

function takes as input parameters the public key (y, z), the hash value, the signature mode, the control key,

and verifies the signature based on these parameters. If the signature is valid, the VerifyAlg1 function returns

true else returns false. A block diagram of the signature validation is shown in Fig. 3.

Callback functions of the Signature Provider

According to the requirement of the signature provider interface, the following callback functions are implemented:

 Callback functionGetSignatureInterface

 Signature interface callback functions

 OpenAlgorithmProvider;

 GetProperty;

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8370

 SetProperty;

 CloseAlgorithmProvider;

 GenerateKeyPair;

 FinalizeKeyPair;

 SignHash;

 VerifySignature;

 ImportKeyPair;

 ExportKey;

 DestroyKey.

The callback function GetSignatureInterface is used by the CNG router in order to obtain the callback function's

addresses of the signature interface. It takes the signature provider name and the algorithm name as input parameters.

The callback function GetSignatureInterface returns an object of the BCRYPT_SIGNATURE_FUNCTION_TABLE

structure as an output parameter, which stores the callback function's addresses of the signature interface.

Structure BCRYPT_SIGNATURE_FUNCTION_TABLE:

typedefstruct _BCRYPT_SIGNATURE _FUNCTION_TABLE {

 BCRYPT_INTERFACE_VERSION Version;

 BCryptOpenAlgorithmProviderFn OpenAlgorithmProvider;

 BCryptGetPropertyFn GetProperty;

 BCryptSetPropertyFn SetProperty;

 BCryptCloseAlgorithmProviderFn CloseAlgorithmProvider;

 BCryptGenerateKeyPairFn GenerateKeyPair;

 BCryptFinalizeKeyPairFn FinalizeKeyPair;

 BCryptSignHashFn SignHash;

 BCryptVerifySignatureFn VerifySignature;

 BCryptImportKeyPairFn ImportKeyPair;

 BCryptExportKeyFn ExportKey;

 BCryptDestroyKeyFn DestroyKey;

 } BCRYPT_SIGNATURE_FUNCTION_TABLE;

The Version, a member of structure contains the interface version value. In the current signature provider, it equals to

BCRYPT_SIGNATURE_INTERFACE_VERSION_1. The remaining members of structure contain the addresses of the

signature interface’s callback functions.

The member’s values of the object of the structure BCRYPT_SIGNATURE_FUNCTION_TABLE:

BCRYPT_SIGNATURE_FUNCTION_TABLE ALPSignatureFunctionTable = {

 BCRYPT_SIGNATURE_INTERFACE_VERSION_1,

 ALPOpenSignProvider,

 ALPGetSignProperty,

 ALPSetSignProperty,

 ALPCloseSignProvider,

 ALPGenerateSignKeyPair,

 ALPFinalizeSignKeyPair,

 ALPSignHash,

 ALPVerifySignature,

 ALPImportKeyPair,

 ALPExportKey,

 ALPDestroyKey

};

The ALPOpenSignProvider function is called by the CNG router when the application attempts to establish connection

with the CNG provider. The general scheme of using CNG provider by applications is shown in Fig. 1.

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8371

Begin

(x,u)-private key, m-hash

value, µ-signature mode,

control key R1,

{p,q,R,g}parameters value

 k=H(m+(1+mR)c

k=0 yes c=c + 2

c=x

no

r = m + (1+mR)T (mod p)

r mod q = 0 yes k k+1 (mod p)no s1 k-rx(mod q)

s s1 u-1 (mod q) µ = 0

(s,r) - signature

yes

no r1 R1+ (1+RR1)r (mod q)

r1 = 0

yes

nox1 = (k-suR1)r1
-1 (mod q)

х1=0

yes

no

(s,r,y1) - signature

End

s1=0 yes

no

y1 (gR1
-1)\x1 (mod p) with

parameter RR1

T=g\(p-k-1)(mod p)

with parameter R

Fig.2.The block diagram of the signature calculation of the first algorithm of the O’zDSt1092:2009 standard

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8372

Begin

(y,z)-public key, m-hash

value, µ-signature mode,

control key R1,

{p,q,R,g}parameters value,

{s,r,y1} - signature

r r (mod q)

z1 z0 + (1+ z0 R) y2 (mod p)
y3 z1 + (1+ z1 R) r (mod p)

µ = 0yes no

signature is not

valid
signature is valid

End

µ = 1 and
m = y3

z0 z\s (mod p) with parameter R

y2 y
\r (mod p) with parameter R

yes

m = y3

yes

no

g3 z1 R1
-1 (mod p)

s1 sR1 (mod q)
r1 R1 + (1+ RR1) r (mod q)

z2 zR1
-1 (mod p)

y4 y1(mod p)

z3 z2
\s1 (mod p) with parameter RR1

y5 y4
\r1 (mod p) with parameter RR1

g4 z3 + (1+ z3RR1)y5 (mod p)

 g3 = g4

yes

no

no

Fig.3. The block diagram of the signature validation of the first algorithm of the O’zDSt1092:2009 standard

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8373

The ALPOpenSignProvider callback function takes the signature algorithm name as an input parameter, and returns the

handle of the signature provider.This handle serves as an identifier of the current connection. Furthermore, it is also

used as an input parameter in many functions of the signature interface. The callback function ALPOpenSignProvider

initializes an object of the type ALP_SIGN_ALGORITHM and returns its address as a handle of the signature provider.

Structure ALP_SIGN_ALGORITHM:

typedefstruct _ALP_SIGN_ALGORITHM{

 ALP_OBJECT_HEADER Header; //object length and magic number

 DWORD cbSignature; //signature length

 wchar_tszAlgorithmName[256]; // signature algorithm name

 DWORD dwKeyLen; //public key length in bits

 charparamOID[64]; // OID of the parameters

} ALP_SIGN_ALGORITHM

typedefstruct _ALP_OBJECT_HEADER{

 DWORD cbLength; // object length

 DWORD dwMagic; // magic number

}ALP_OBJECT_HEADER

The function ALPGetSignProperty is used by CNG router in order to retrieve the value of the property of a signature

provider or a key. It accepts an object handle and the property name as input parameters, and returns the property value.

An object handle can be a value of the type BCRYPT_ALG_HANDLE, which was obtained by calling the

ALPOpenSignProvider callback function or a value of the type BCRYPT_KEY_HANDLE, which can be obtained by

using the ALPGenerateSignKeyPaircallback functionor theALPImportKeyPair callback function. Usually, the callback

function ALPGetSignProperty is called in order to obtain the signature algorithm name, signature length and the public

key length.

The callback function ALPSetSignProperty is called by the CNG router in order to set the property value of the

signature provider or the key. As input parameters, it assumes the followings: the object handle, the property name and

a new value of the property.

The CNG router uses the callback function ALPCloseSignProvider when application closes the connection with the

signature provider. It takes the handle of the signature provider as an input parameter. It frees the occupied memory by

the signature provider object which was created by using the ALPOpenSignProvider callback function.

In order to generate a key pair, the callback function ALPGenerateSignKeyPair is called by the CNG router. As input

parameters, it takes the handle of the signature provider and public key length, and returns the handle of the key. The

callback function ALPGenerateSignKeyPair does not generate a key pair, it only begins the process of key pair

generation. It initializes an object of type ALP_SIGN_KEY and returns the object address as a handle of the key.

Usually, after calling the ALPGenerateSignKeyPair callback function, the ALPSetSignProperty callback function is

called to set the key length, parameters p, q, R, g, µ, etc. The process of generating a key pair is completed by calling

the ALPFinalizeSignKeyPair callback function.

Structure ALP_SIGN_KEY:

typedefstruct _ALP_SIGN_KEY

{ALP_OBJECT_HEADER Header;

PALP_SIGN_ALGORITHM hAlgoritm;

BYTE privateKeyX[16]; // x-private key parameter

BYTE privateKeyU[16]; // u- private key parameter

BYTE publicKeyY[128]; // y- public key parameter

BYTE publicKeyZ[128]; // z- public key parameter

DWORD dwKeyBitLen; // public key length

BOOL isFinished; // whether the key is finalized

BOOL mu; // signature mode

LPCSTR pParamOid; // OID of the key

BYTE *pbp; // p parameter

DWORD *cbp; // p parameter length

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8374

BYTE *pbq; // q parameter

DWORD *cbq; // q parameter length

BYTE *pbR; // R parameter

DWORD *cbR; //R parameter length

BYTE *pbg; // g parameter

DWORD *cbg; // g parameter length,

}ALP_SIGN_KEY

The callback function ALPFinalizeSignKeyPair is for complete key pair generation process. It takes the handle of the

key as an input parameter, and calculates (x, u) - the two numbers of the private key, (y, z) - the two numbers of the

public key. This callback function does not create a persistent key.

The ALPSignHash callback function is called by the CNG router in order to create a signature. It takes as input

parameters the key handle, a hash value, and returns the created signature. In order to compute signature it uses the

function SignAlg1.

The ALPVerifySignature callback function is called by the CNG router in order to verify the signature. It takes as input

parameters the handle of the key, a hash value, a signature and returns the result of signature validation. In order to

verify signature it uses the function VerifyAlg1.

The ALPImportKeyPair callback function imports a key that is exported by the ALPExportKey callback function. It

takes as input parameters, a key BLOB, a type of BLOB, and returns the handle of the imported key. For this signature

provider the type of BLOB can be one of the following values: BCRYPT_PUBLIC_KEY_BLOB,

BCRYPT_PRIVATE_KEY_BLOB. The ALPImportKeyPair callback function initializes an object of type

ALP_SIGN_KEY.

The ALPExportKey callback function exports the key. The ALPExportKey callback function as input parameters

accepts the handle of the key, the type of BLOB, and returns the key BLOB. The public key BLOB consists of a key

identifier, key version, OID of the key, (y, z) - values of the public key. The private key BLOB consists of the key

identifier, key version, OID of the key, (y, z) - values of the public key, (u, x) - values of the private key.

The callback function ALPDestroyKey is used by CNG router to destroy a key. It takes the handle of the key as an input

parameter.

V. REGISTRATION OF THE SIGNATURE PROVIDER

The function BCryptRegisterProvider is used for register the signature provider [3].

Syntax:

NTSTATUS WINAPI BCryptRegisterProvider(

In LPCWSTR pszProvider,

In ULONG dwFlags,

In PCRYPT_PROVIDER_REG pReg)

The function BCryptRegisterProvider accepts the name of the algorithm provider via the pszProvider parameter, and

the rest of the configuration data via the pReg parameter. The configuration data contains the algorithm name and the

algorithm class.

After calling the BCryptRegisterProvider function, the BCryptAddContextFunctionProvider function is called in order

to add the provider to the list of signature function providers.

VI. REGISTRATIONOID INFORMATION OF THE O'ZDST1092:2009 SIGNATURE ALGORITHM

As the algorithm identifier, not only the name of the algorithm is used, but also the OID of the algorithm is used. The

name of the algorithm are not used in certificate signing request(CSR) and in digital certificate, the OID of the

algorithm are used instead. That’s why the OID of the algorithm must be registered in Windows:

#define szOID_UZASYMM1_SIGN “1.2.860.3.15.1.1.1.1”

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 6, Issue 3, March 2019

Copyright to IJARSET www.ijarset.com 8375

#define BCRYPT_UZ_SIGN_ALG1_2009 L"O'zDSt 1092:2009 Alg1"

// Register the O'zDSt 1092:2009 Alg1 Algorithm

 CRYPT_OID_INFO UZSIGN_ALG1OIDInfo;

 memset(&UZSIGN_ALG1OIDInfo, 0, sizeof(UZSIGN_ALG1OIDInfo));

 UZSIGN_ALG1OIDInfo.cbSize = sizeof(UZSIGN_ALG1OIDInfo);

 UZSIGN_ALG1OIDInfo.pszOID = szOID_UZASYMM1_SIGN; // OID for the sign Alg.

 UZSIGN_ALG1OIDInfo.pwszName = BCRYPT_UZ_SIGN_ALG1_2009;

 UZSIGN_ALG1OIDInfo.dwGroupId = CRYPT_PUBKEY_ALG_OID_GROUP_ID;

 UZSIGN_ALG1OIDInfo.Algid = CALG_OID_INFO_CNG_ONLY;

 UZSIGN_ALG1OIDInfo.pwszCNGAlgid = BCRYPT_UZ_SIGN_ALG1_2009;

 CryptRegisterOIDInfo(

 &UZSIGN_ALG1OIDInfo,

 0// dwFlags);

VII. RESULTS

The signature provider “ARH Primitive Provider”, which implements the first algorithm of the standard

O'zDSt1092:2009, was created. All functions of the signature provider interface, such as key generation, signature

creation, signature verification, export and import keys was successfully tested on 32-bit and 64-bit Windows 8 and

Windows 10 operating systems.

VIII. CONCLUSION AND FUTURE WORK

We proposed a model of a signature provider, the implementation of the mathematical functions of the digital signature

algorithm O’zDst1092:2009. We presented the description and implementation of the signature interface functions and

the registration of signature provider, which can be used for implement other signature algorithms and signature

providers. The created signature provider is used with other CNG providers such as a hash provider and a key storage

provider.

The Key Storage Providers are used in order to secure storage, export and import keys. The created Key storage

provider, which provides storage, export/import keys in the PKCS#7 and PKCS#8 format, and the generation PKCS#10

certificate signing request via the CertEnroll API are testing.

REFERENCES

[1]Aloev R.D., Nurullaev M.M., Alaev R.H. “Working with the key information”, International Journal of Information Research and Review Vol. 03,
Issue, 11, November, 3217-3220, 2016.

[2]Y. Ahmad. “A study on algorithms supported by CNG of Windows Operating System”. International Journal of Modern Engineering Research

(IJMER). Vol.2, Issue.1, pp-276-280, Jan-Feb 2012.
[3]Z. Lina. “Design and Implementation of KSP on the Next Generation Cryptography API”. International Conference on Medical Physics and

Biomedical Engineering (ICMPBE), vol. 33, pp. 1640-1646, Sep. 2012, DOI= https://doi.org/10.1016/j.phpro.2012.05.264.

[4]K. Lee, Y. Lee, J. Park, I. You, K. Yim. “Security Issues on the CNG Cryptography Library (Cryptography API: Next Generation)”. Proceedings
of International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing(IMIS), pp. 709-713, Jul. 2013, DOI=

https://doi.org/10.1109/IMIS.2013.128.

[5]K. Lee, H. Lee, Y. Lee and K. Yim, "Analysis on the Key Storage Mechanism of the CNG Library," 2016 10th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 499-502, Fukuoka, 2016, DOI=

https://doi.org/10.1109/IMIS.2016.103.

[6]K. Lee, I. Oh, S. Lee, K. Yim. Vulnerability Analysis on the CNG Crypto Library. The Journal of Korean Institute of Communications and
Information Sciences. Vol.42 No.04, pp. 838-847, DOI= https://doi.org/10.1109/IMIS.2015.34.

[7] Akhalique, k.Singh, S.Sood, "Implementation of elliptic curve digital signature algorithm", International journal of computer applications,vo1.2,

May 2010.
[8] Abidi, Abdessalem&Bouallegue, Belgacem&Kahri, Fatma. (2014). Implementation of elliptic curve digital signature algorithm (ECDSA). GSCIT

2014 - Global Summit on Computer and Information Technology. 1-6. https://doi.org/10.1109/GSCIT.2014.6970118.

[9] Temitope O.S. Olorunfemi, B.K. Alese, S.O. Falaki and O. Fajuyigbe, 2007. Implementation of Elliptic Curve Digital Signature Algorithms.
Journal of Software Engineering, 1: 1-12, DOI: http://dx.doi.org/10.3923/jse.2007.1.12.

[10] Bin Chen, Wenliang Wu, and Yao Zhang, The Design and Implementation of Digital Signature System Based on Elliptic Curve", the 2012
International Conference on Cybernetics and Informatics, Vo1.l63, pp. 2041-2047, 2014, DOI: http://dx.doi.org/10.1007/978-1-4614-3872-4_260.

[11] Cryptography API: Next Generation. Retrieved November 11, 2018, from https://docs.microsoft.com/en-us/windows/desktop/seccng/cng-portal.

http://www.ijarset.com/

