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ABSTRACT: The article deals with the task of moving the ripper in a soil medium simulated by a plastically 

compressible medium proposed by Rakhmatulin. Where the soil under loading changes its density according to a 

certain law and, during unloading, it retains the density obtained during loading. Assuming the ripper with a thin body, 

the equation of the soil motion was compiled, where the “hypothesis of flat sections” proposed by Rakhmatulin and 

Ilyushin was used to solve a number of aerodynamic problems. 
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I. INTRODUCTION 
 

Establishing patterns of interaction of a solid body with the ground is of interest in questions of a projectile 

falling into the ground, landing an aircraft on the ground, driving piles and other tasks related to determining contact 

force (resistance) on the surface of the body. At the same time, difficulties arise in determining the movement of the 

ground, where its physicomechanical properties will play a significant role. Soils, as already noted, differ in structure, 

shape, packaging of solid particles, water and air content. The consequence of this is a large variety of soil mechanical 

properties under dynamic and static effects. This, in particular, explains the difficulties in practice for determining the 

laws of motion of solids in the soil environment. 

In papers [1-2], experimental methods for studying the behavior of soils under static and dynamic effects were 

developed. Based on the analysis of the results of these studies, various models of soils with more or less general 

properties have been developed. This circumstance made it possible to achieve certain success in solving problems of 

the dynamics of bodies moving in a ground medium. The fundamentals of soil modeling are described in the 

monograph [1]. When considering applied soil, it is modeled as a multicomponent continuous medium, the motion of 

which is characterized as an ideal fluid or elastic (multicomponent) medium. Such a model can be used to describe the 

movement of water-saturated soils. For soils of low or medium humidity, i.e. consisting of solid particles and air 

inclusions, large shear and bulk irreversible deformations are significant. Such soils are usually considered as plastic 

compressible medium. 

II. PROBLEM FORMULATION 
 

With very large compressive loads (pressures), where the mean hydrostatic pressure is much higher than the 

shear stresses, soils can be considered as compressible fluid with reversible or irreversible volumetric deformation. 

In this work, the model of "plastic gas" by academician Rakhmatulin [1] is used. According to this model, the 

soil during loading changes its density according to a certain law; during unloading, it preserves the density obtained 

during loading. In the future, simulate the soil plastic compressible medium. Consider the ripper legs in the form of a 

sharp wedge with the same two side faces in the form of a rectangle with an acute angle   at the apex. The surface 

area of the foot will be equal to: 
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лапh  is the height of the foot, лап  is the angle of inclination of the foot to the base. For the equation of 

motion of the surrounding wedge soil replace the wedge with the reduced circular cone with an area equal to клS . 

Denote by конh  and кон2  the height of the cone and the angle at the vertex, which should satisfy the equation: 

лап
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In particular, if we take the heights of the foot and the cone equal to hhh конкл  , then for the angle 

( кон )  we have the expression: 

)1arcsin( 2 ppкон  , 
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To compose the equation of motion of the soil, we use the “hypothesis of flat sections” proposed by 

Rakhmatulin and Ilyushin to solve a number of aerodynamic problems. According to this hypothesis, soil particles 

perform radial movements in a plane perpendicular to the axis of symmetry of a solid (cone). In this case, the problem 

of body motion is reduced to the study of the motion of a compressible plastic (granular) medium with cylindrical 

symmetry [2]. 

Let the cone begin to move according to the law. Consider an arbitrary section of the cone ( )( 11 tLL    

( )(0 1 tLL  ) we assume that at the point of contact of the vertex of the cone of this section ( 1tt  ), a cylindrical 

compression wave occurs in the ground at the moment (), and at the time point ( 1tt  ) the boundary of the field of 

disturbed soil motion will be limited by the radii of the cylindrical wave )(* trr   and )(tLtgr  , which is the 

intersection line of the surface of the cone with the plane under consideration. 

 

III. SOLUTION METHOD 

 

We assume that the density of the soil changes only at the front of a cylindrical wave is determined by the 

intensity of this wave and therefore the density of the soil in the perturbation region is only a function of the coordinate 

r  and does not depend on time t . We take r for the Lagrangian coordinate and write the equations of motion and 

continuity in cylindrical coordinates in an arbitrary section 1LL  : 

1LL   
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r is -the initial distance of particles from the axis of the cone, ),( truu  - displacement of the soil particle at 

this distance, t - time, 0  and   are the initial and current density of the soil in the disturbed region )(*1 trrL  , 

r  and   are radial and tangential stresses.Since the soil is modeled by plastic (bulk) medium, the stresses satisfy 

the Prandtl plasticity condition [3]: 

)(0    rr     (3) 

where  cos20 k and  sin , k - grip,  - the angle of internal friction. 

Eliminating the stress from equation (1) we bring it to the form: 
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Here )1/(2    

Multiply both sides of equation (4) by functions 
1)(  ur  and integrate with respect to the Lagrangian 

variable r  
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where )(tLtgR  is the radius of the internal boundary of the perturbed region in the Lagrangian variable 

0r  at an arbitrary time. 

We denote by ),( *

* trrr   the stress at the front of a cylindrical wave, where the movement of particles is 

zero. Then equality (5) on the front )(* trr   is written in the form: 
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Subtracting (6) from (5), we get: 
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Considering now the independence of density from time in a perturbed domain, we integrate the continuity 

equation (2): 

)()(2)( 22 tRrur        (8) 

Where 
r
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At the wave front )(* trr   we have 0u , therefore from (8) we have: 
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With a known law )(r  , from the formula (9) it is possible to establish the law of movement of the 

front of a cylindrical wave )(* trr  . 

Differentiating (8) over time, we find the velocity and acceleration of soil particles in the perturbation region 

)(*1 trrL  : 

)()(2 2 tRr

RR

t

u











, 

2/32

22

2

2

2

2

)]()(2[)()(2 tRr

RR

tRr

RRR

t

u
















,           (10) 

The speed of soil particles at the wave front is determined from the first expression (10), where you should 

assume )(* trr  : 

*
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To determine the stress at the wave front r
*

r , we use the law of conservation of mass and the theorem 

on the amount of motion [2]: 

)( *0 uDD                                                                                       (12)                    
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ar puD  *

*0                                                                                       (13) 

Where D  is a frontal velocity of a cylindrical wave, ap  is pressure ahead of the compression wave. From 

(12) and (13) we find the wave velocity D  and stress
*

r : 
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Supplying the acceleration of particles and the expression 
*

r , respectively, from (10) and (13) to (7), we find 

the voltage in the perturbed region: 
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Substituting the expression ur   from (8) in formula (14), we can establish the spatial – temporal 

distribution of stress in the perturbation region, where it is necessary to consider a known experimentally determined 

function )(r . If we consider the process of wave propagation over a small period of time, then we can assume the 

density of the soil behind the wave front is constant and equal to const 1 . Assuming 0r , )(tRu   we 

obtain an explicit expression for the stress rp   on the surface of the cone: 
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Where 101 / b , 1LLx  ,   /)1(),( 2/

1  ab , )1/(1 1ba  . 

The total resistance force acting on the surface of the cone is calculated using the integral ( 0 - coefficient of 

friction between the soil and the surface of the cone): 
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Substitute the expression of pressure from (15) and perform the integration, then taking into account 

LtgR  , we obtain: 
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The equation of motion of a cone (body) with mass m  under the action of an external force )(0 tP  is written 

in the form: 

)(0 tPFLm   

or taking into account (16) we bring to the form: 
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Where 
3

00 )1()( Chctghmпр   - attached ground mass. 

Equation (17) with the action of an arbitrary force is integrated numerically with the initial conditions 0L

and 0L  at 0t . Consider the case: 

constPtP  000 )(  

Assuming )(2 LyL  , )](/[2 000 hmmPp пр , from equation (17) we bring to the form: 

0pbayy                                                                   (18) 

Let the foot begins to move with a zero initial speed, i.e. believe 0у  at 0L . To overcome the resistance 

force of the soil, as can be seen from the equation, it should be assumed 0L  that it is necessary to apply a force 

satisfying the condition 
2

0

*

00 )1( hctgAPP  . 

IV. ANALYSIS OF THE RESULTS 

 Figure 1 shows the dependence of the limiting force on the ratio 101 / b  for different values of the 

parameter  sin . The maximum and minimum values of this force for the selected parameters will be equal 

HP 6.2*

min   at 1.01 b , 9.0  and HP 241*

max   at 9.01 b , .0 . 

It can be seen that for loosened soil (small values of the ratio 101 / b  or large values of the parameter

 ), the movement of the foot begins at insignificant values of force HP 6.200  . 

 
 

Fig.1. Dependence of the limiting force 
*P )(H on the ratio 101 / b  for different values of the parameter 

 sin : black - 0 , green- 5.0 , blue- 7.0 , red- 9.0  

 

Integrating equations (18) with the initial condition 0y  for 0L , we get: 

)exp(1* aLv
dt

dL
y                                                                                         (19)   
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Where 
a

bp
v


 0

* maximum speed of the foot, achieved at t . 

Figure 2 shows the dependence of the limiting velocity *v )/( cм  on the ratio 101 / b  for 

HP 5000  different values of the parameter  sin . Analysis of the curves shows that for the selected value of 

the force 00P , the movement of the foot is realized for limited values of the parameters 1b  and  , and it has the 

highest limiting speed at small values of the ratio 101 / b . It can be seen that a significant effect of the parameter 

is found for large values of the ratio 101 / b . 

As the value grows 00P , the realizable motion region for the parameters 1b  and will  also increase. 

 

Fig.2. Dependence of the limiting velocity
*v )/( cм on the ratio 101 / b  for different values of the parameter

 sin : black - 0 , green- 5.0 , blue- 7.0 , red- 9.0  

We integrate equation (19) with the initial condition 0L  at 0t , then we get: 


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2
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In fig. 3 shows the graphs of the movement of the foot )(мL   mass кгm 5  with time for three values of 

the parameter   and different values of the ratio 101 / b  under the action of a constant force HP 5000  . 

From the analysis of the curves obtained it follows that the speed of the foot with time increases quickly 

reaches the limit value, and then the foot moves at a constant speed. At small values of the parameter  , the movement 

of the foot is realized only for smaller values of the ratio 101 / b  (Fig. 3a), which corresponds to a looser soil. 

With the growth of the soil relatedness parameter  )5.0(  , the movement of the foot can be realized for all values 

of the ratio 101 / b  (Fig. 3b) 
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а)                                                                b) 

 

Fig.3. Dependence of the movement of the foot )(мL on time )(st  with 1.0  (a), 5.0  (b) and various 

values of the relation 101 / b : black - 1.01 b , green- 3.01 b , blue- 4.01 b , red- 5.01 b  

 

V CONCLUSION 

 

1. It is shown that for the selected value of the force 00P , the movement of the paw is realized for limited values 

of the parameters 1b  and  , and it has the highest speed limit at small values of the ratio 101 / b . As 

the value grows 00P , the realizable motion region for the parameters 1b  and  will also increase. 

2. It has been established that with the growth of time, the speed of the foot quickly reaches the limiting value, 

and for small values of the soil relatedness parameter  , the movement of the foot is realized only for small 

values of the ratio 101 / b , which corresponds to a looser soil. With the growth of this parameter 

)5.0(  , the movement of the foot can be realized for all values of the relation 101 / b . 
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