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ABSTRACT: The algorithms for the stable estimation of the covariance noise matrix of a controlled object based on 

the iterative computational algorithms are presented in the article. The possibilities of the secant method using regular 

methods are analyzed to determine the covariance noise matrix of an object. Lavrentiev and Tikhonov methods for 

regularization parameters selection based on the methods of quasi-optimality and relations are used for regularization 

of desired hyperplanes construction. The presented algorithms make possible to perform a stable estimation of the 

covariance noise matrix of an object and thereby increase the accuracy of the adaptive estimation. 
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I.INTRODUCTION 

 

Let’s consider a linear continuous stochastic dynamic system, which can be described by the equations in discrete time: 

iiiiiii wГuBxAx 1 ,       (1) 

iii vHxz  ,         (2) 

where ix  – vector of a dimension condition system n, iu  – dimension control vector l; iz  – dimension observation 

vector m, iw   and  iv   – object noise vectors and observation noise of q and p dimensions, respectively, which are a 

sequence of the form of Gaussian white noise with characteristics   0iwE ,   ik
T
ki QwwE  ,   0ivE , 

  ik
T
ki RvvE  ,   0T

kivwE ; iii ГBA ,,   and  iH  – matrixes of corresponding dimensions. These sequences also do 

not depend on the random initial state of the system 0x  with the mathematical expectation 0x  and the covariance 0P . 

 

To estimate the state vector ix  of the dynamic system (1), (2), traditional Kalman filter equations [1-9] are usually used: 

iiiii BuxAx  ||1
ˆˆ , 

1|
ˆˆ  iii xHz , 

1|
ˆˆ  iiiiii xHzzzy , 

iiiiiiiiiii zKxzzKxx   1|1||
ˆ)ˆ(ˆˆ , 

Apriori information on the mathematical model of an object, on the input and measurement noise statistics is required 

to implement the Kalman filter. Inaccuracy in a priori data can cause divergence [2,4,7]. 

 

II. FORMULATION OF THE PROBLEM 

 

One of the possible ways to develop adaptive filtering algorithms is to use the correlation properties of the updated 

sequence in order to design estimates of the covariance matrices of the input Q and R noise measurement [2,4,8]. This 

algorithm is suitable for stationary objects, stationary input and measuring noise. Before using the adaptive algorithm, 

the state vector is estimated based on the classical Kalman algorithm, in which the matrices Q and R are given. In this 

case, it is necessary to determine the degree of difference between the used matrices Q
~

 and R
~

 from the real 
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covariance matrices of the input noise Q and measuring noise R. If Q
~

 and R
~

 are slightly different from the real values 

of Q, R, the Kalman filter actually works in the optimal mode and we can assume that QQ 
~

, RR 
~

. Thus, testing the 

optimal properties of the Kalman filter with selected Q
~

 and R
~

, it is possible to solve the problem of the correctness of 

the initial choice of Q
~

 and R
~

. Testing can be based on the statistical processing of the updated sequence [2,4,7,8]. In 

case where iv  is white random noise, the filter with the initially selected Q
~

 and R
~

 works practically optimally, and we 

can assume that QQ 
~

, RR 
~

. If iv  is not white random noise, then the filter operates in a suboptimal mode and it is 

necessary to evaluate the real values of Q and R, which are different from the initial matrices Q
~

 and R
~

. 

 

A number of methods that enable to evaluate or identify the elements of these covariance matrices [2,3,7,10] are known. 

The significant part of the identification algorithms for the covariance noise matrices iQ  and iR  can be based on the 

analysis methods for sequence updating or measurements residual  1|
ˆ

 iiiii xHzv  in Kalman filter. 

For a suboptimal filter, the updating process represents a non-white Gaussian process with the following correlation 

properties [2,4]: 

  RHHPvvMC TT
ii  '0 ,      (3) 

      0
1

' KCHPAKHIAHvvMC TkT
kiik 


 , 

where     TTTTT
ГQГAAKRKAKHIPKHIAP  ''  - a priori covariance matrix of error estimation of  Kalman 

suboptimal filter. 

The estimation of the covariance matrices quantity Ck can be obtained using the ergodic properties of a stationary 

updating sequence [2]: 





N

ki

T
kiik vv

N
C

1ˆ . 

The estimation of the measuring noise matrix is based on the equation (3), i.e. 

 THPHCR 'ˆˆ
0  . 

Let’s restrict to the case when the number of unknown elements of the matrix Q is less than or equal to mn . Then we 

can write [2]: 

 

     

   




















1

0

1

0

,,...,2,1,ˆ'

'

k

j

TTkjjTTk

TTkTT
k

j

TTkjTj

nkHAVHAHPHA

HAHPHAГQГHA

   (4) 

where     TTTTTT AKCKKHPHPKAV





  0
ˆ''ˆ . 

Let’s rewrite the system of equations (4) in the following form 

0)( qf ,        (5) 

where  mnqqqq  ,...,, 21  – vector composed of elements of the covariance matrix Q . 

 

III. SOLUTION OF THE TASK 

 
To solve equation (5), we will use the secant method [11,12] in mnp  -dimensional space. 

According to the method of secant equation, 1p - points in p -dimensional space and p  hyperplanes can be written 

as: 

pqqqq Ti

p

iii
,...,2,1,),...,,( 21   , 
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pkaqaqL
p

j

k
pj

k
j

k ,...,2,1,0)(
1

1 


 .     (6) 

In this case, hyperplanes must satisfy a condition of the form: 

pkpfqL i
k

ik ,...,2,1,,...,2,1,0),()(  
 Q , 

or pkpqfqfqqaqLqL
i

k

i

k

p

j

i
j

i

j
k
j

ikik ,...,2,1,,...,2,1),()()()()( 000

1

 


 . 

To develop these p  hyperplanes, it is necessary to find the elements of matrix A  based on an equation of the form: 

F AQ)( ,       (7) 

where  





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
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

. 

 

When solving (7) in order to give greater numerical stability, it is advisable to calculate the matrix A  on the basis of 

the expression: 

Fg  )( QA  , 

where – 
1)()(  Ig  QQ  – generating function system for the regularization method;  –regularization 

parameter; I –  identity matrix. Here, it is necessary to determine the regularization parameters based on the methods of 

quasi-optimality, relativity or cross-significance [13-16]. 

 

As a new point, by means of one iteration using the secant method, we take the intersection point of the developed 

hyperplanes, i.e. the system solution (6) or pkqfqqaqLqL
i

k

p

j

i
jj

k
j

ikk ,...,2,1),()()()( 000

1

 


, and in matrix 

form )()( 00 iiT qfqq A . Consequently,  

)()))((()()( 0000 11 iTiiTi
qfIFgqqfqq    QA ,    (8) 

where   - regularization parameter, which is determined on the basis of the model sample method [13]. 

 

Taking ii 0  and considering 

pqqqqqqq Ti
p

iiiiii
,...,2,1,),...,),(,,...,,( 1121    

 ,      (9) 

)()( iii qfqq   , 

We can write 
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)())(,())(( 1
 k

iiT uqqF   fQ' , 

where ))(())(),...,),(,,...,,(( 1121
iii

k
i
p

iiiii
kk qqqfqqqqqqfu     . 

Then, taking into account (8) for the )1( i -st approximation, we can write the following expression for the iterative 

process 

)()))(,(( 11 iiiii qfqqqq   f .       (10) 

In the practical use of the iterative algorithm (10), computational difficulties arise due to the fact that such iterative 

procedures have significant instability - with an increase in the number of iterations, a significant accumulation of 

errors can occur [17-19]. Let us regularize algorithm (10) based on A.N.Tikhonov iterative method [17,20]. Thus, the 

estimation algorithm can be formed: 

)()))(,(( 11 i
ii

iiii qfBqqqq   f .     (11) 

 

Based on the research results [19,20], it can be shown that for obtaining a minimizing sequence, less sensitive to the 

choice of the initial approximation and converged to the set of the minimum points, parameter i  in (11) can be chosen 

in the form of 0,)1( 1   BB ii . 

Based on (9), we can develop an expression of the following form: ))(,())(,( iiii qqФIqq  f , where 
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1121
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


f  

It can be noted that in one iteration of the iterative process (11), only one system of linear algebraic equations is solved 

as in the Newton method: )()))((,( iiii qfqqqq f . 

 

It can be marked that the iterative algorithm (11) does not require the calculation or approximation of partial derivatives, 

which makes it distinct from the iterative algorithms of the first and second orders. 

Based on the research results [17-20], it can be shown that the iterative process (11) converges from any initial 

approximation qNq 0 , i.e. 0lim 



i

i
qq , where }{  qqNq , 0  – is a fairly small number; 

),...,,( 21
  pqqqq  – is the only solution to system ),...,,(),,...,,(,0)( 2121 pp ffffqqqqqf  . 

 

VI.CONCLUSION  

 

Thus, the presented algorithm makes possible to obtain a regularized solution of the equation (11) for the stable 

determination of the elements of the covariance noise matrices of an object and measurement residuals and their 

subsequent use at calculating intensification coefficient of Kalman filter, and thereby adapt the filter to the variable 

values of the covariance matrices of disturbing actions. 
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