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ABSTRACT: This article highlights the classification of second-order surfaces in the Galilean space, indicating 

surfaces that are different from the Euclidean space that we know. Second-order surfaces were divided into seventeen 

types. Distinguished surfaces are different from some surfaces in Euclidean space and form a separate class. Thus, they 

cannot be transform from one surface to another by changing. 
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I. INTRODUCTION 

 

It is known that, second-order surfaces in the Euclidean space were classified and their types were 

identified.[1] 

The formula for transformation in the Galilean space is as follows [2]: 

 

                                           
                   
                   

        (1) 

The classification of second-order lines in Galilean space was studied by Makarova [3]. The following article 

presents invariants with respect to second-order lines in Galilean space [4]. In this paper, we classify second-order 

surfaces with respect to transformation (1) and classify them into types to show second-order surfaces. 

 

II. PRELIMINARIES 

 

Let two vectors 
1 1 1( , , )X x y z  and 

2 2 2( , , )Y x y z  be given in the affine space 3A .  

Definition 1[2;5]. Galilean spaces are affine spaces in which the scalar product of the vectors 1 1 1( , , )X x y z  and 

2 2 2( , , )Y x y z  is defined as follows: 
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In the Galilean space 
1

3R , the norm of the vector is defined as the square root of the scalar product of the vector by 

itself, that is  
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In 
1

3R , the distance between two points 1 1 1( , , )A x y z  and 2 2 2( , , )B x y z  will be equal to the norm of the vector 
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In the Galilean space, equation of motion is defineed in the form of equation (1). In order to determine this, let's 

look at the motion in the Galilean plane. 

The motion of the Galilean plane is a linear transformation[4]: 

0
x x a

h
y hx y b

  
  

   
 

consisting of parallel transfer to the vector ( ; )a a b  and transformation matrix 
1 0

1
A

h

 
  
 

, where 1DetA . 

The matrix A  will be an element of the Heisenberg group [6]. When in the linear transformation 0a b  , then  

 

  

If 0x x  is straight parallel to the Oy  

axis, then the linear transformation will have the following form: 

0

0

x x

y hx y

 

  

 

This means that 0x x   the straight line does not change, from the equality 0y hx y    it follows that the 

straight line slides at a distance 0hx  along the straight line itself.  

 

III. MAIN RESULTS 

 

Let a second-order surface equation be given: 

    
      

      
                                               (2) 

To simplify the equation of a second-order surface, it is necessary to obtain the coordinate axes conveniently. We first 

bring the coordinate head to the center of the surface by performing the following transformation: 

 
     
     
     

  

In this case: 
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There: 

   

 

   

   

   

   

   

   

  

  
   

  

   

  

   

  

  

 

 

 

         

         

         

 

 

We now perform the transformation in Equation (3). 
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Now we set the coefficients in front of the terms xy, yz and xz to zero. 

 

                                                               
                                                               

                                            
                                         

  

If we find the unknowns   ,    and    in this system, we get the following: 
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If we simplify the findings by the above equation, we get the following form:  

 

         
         
         

 

 
      
      

 
      

     
  

 

   
   

   
   

   
   

  
  

   
  

   
  

   
  

  
 

 

 

         
         
         

 

             (5) 

Here  and  are the roots of the equation                
      

      
    

We can indicate the following definitions:          ,     
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 . 

What geometric position Equation (5) represents depends on the signs of   ,   ,   ,   ,   ,   . 

 1)If the indicators of   ,   ,    are the same and if    , Equation (5) represents the real ellipsoid. 

 2) If the indicators of  ,   ,   are the same and if    , Equation (5) representsthe abstract ellipsoid. 

 3) ) If the indicators of    ,   ,    are the same and    , it represents the absurd cone. 4) If the indicators 

of    ,   are the same and   has an opposite indicator to them, and if     , Equation (5) represents the first type of 

cone. 

 5)  If the indicators of    ,   are opposite and    , if     , Equation (5) represents the second type of cone. 

 6) If the indicators of    ,   are the same and  is opposite to them, and if    , Equation (5) represents the 

first type of single-phase hyperboloid. 

 7) If the indicators of    ,    are opposite and    , and     , Equation (5) represents the econd type of 

single-phase hyperboloid. 

 8) If the indicators of    ,   are the same and   is opposite to them, and if     , then Equation (5) represents 

the first type of two-phase hyperboloid. 

 9) If the indicators of    ,   are opposite and    , and if     ,then Equation (5) represents the second type 

of two-phase hyperboloid. 

Let the equation of the second-order surface of the form (1) be given. Let's assume the same: 

     
In this case, by rotating and sliding the coordinate head without changing it, we can bring Equation (1) to the following 

form: 

   
     

     
      

      
                    (6) 

Then, keeping the direction of the axes, we bring the origin to a point        . Let the following: 

 
     
     
     

  

If we define the left-hand side of equation (1) by         , then (6) looks like this: 

   
     

                                                (7) 

Here,   ,   ,   are private derivatives. 

If we choose the coordination heads       points as follows: 

           ,            ,           . 

Then the equation (1) is supposed to be as follows: 

   
     

                

or 
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The result will be 

   
     

                          (8) 

1) If the indicators of   ,   are the same, equation (8) representsthe first type of elliptical paraboloid. 

2) If the indicators of    ,   are opposite, equation (8) represents the first type of paraboloid.   

If           , equation (7) will be: 

   
     

                                                   (9) 

or in short: 

        . 

It is clear that the constructor of such an equation represents a cylinder parallel to the axis   . If the indicators 

of   , and   are the same, equation (9) represents the first type of elliptical (real or abstract) cylinder; if the indicators 

of   , and     are different, equation (9) represents the first type of hyperbolic cylinder. If one of   , and     are equal 

to zero, equation (9) represents the first type of parabolic cylinder. In special cases, equation (9) represents two 

intersecting or parallel planes. Since this equation (9) is an expression for   and  , and since the geometry of the     

plane is the same as the Euclidean geometry, we did not dwell on its simplification. 

Let us be given a second-order surface equation of the following form: 

    
      

      
                                  (10) 

If in the equation (10),      is equal to    , equation (10) can be shaped as follows: 

    
              

      
                  (11) 

Here,  
   

     
 

   
. 

Now, keeping the direction of the axes, we bring the head of coordinations to a point        , that is 

 
     
     
     

  

If we define the left side of equation (10) as         , equation (11) will be in the folowing form: 

    
                                                                                 (12) 

If we define a point          that is a head of coordination as follows:  

           ,            ,            

In this case,if we suppose equation (10): 

    
                    

or 

           , 

it will be in the form of  

    
                                                                                       (13) 

1) If the indicators of   and are the same, equation (13) represents the second type of elliptical paraboloid. 

2) If the indicators of    and  are opposite, equation (13) represents the second type of hyperbolic 

paraboloid. 

If            , equation (12) will be in the following form: 

    
                                                       (14) 

or in short:. 

        . 

It is known that the constructor of such an equation represents a cylinder parallel to the    axis. We can write the 

expression (14) as follows. 

    
                                  (15) 

 

Here, it is satisfactory  

 

             

           

                          
 

    
. 

3) If the indicators of    and are the same and is opposite to them, equation (15) represents the second 

type of elliptical cylinder.  

4) If the indicators of   and are opposite, equation (15) represents a hyperbolic cylinder. 

5) If    in the equation (14), then equation (14) represents a parabolic cylinder. 
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6) If equation (14) is an expression that only depends on  , that is       , then equation (14) 

represents two (real or abstract) special planes. 

7)  

IV. .CONCLUSION 

 

To sup up, the second-order surfaces in Galileo's space have different surfaces than the second-order surfaces 

in Euclidean space. The second-order surfaces separated by the following transformation (1) appear to be a separate 

class from each other. These separated surfaces are not transferred and can be separated. The internal geometry of the 

above surfaces is different. 
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