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ABSTRACT. In our paper we study a class ),,,,(  bT ,which consists of analytic and univalent functions 

with negative coefficients in the open unit disk U={z∈C:|z|<1}defined by Hadamard product (or convolution) with 

TEBA - Operator, we obtain coefficient bounds and extreme points for this class. Also distortion theorem using 

fractional calculus techniques and some results for this class are obtained. 
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The integral  TEBA-operator of  for  is denoted by  and defined as 

following: 
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The operator is known as the Komatu operator[2].A function  , Uz  is said to be in the class 

),,,,(  bT  if and only if it satisfies the inequality 
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For some  b,01),0(  C 1,  and  for all Uz  . 

The class )0,,1,0,(  T  was introduced  Altintas[1] who obtained several results 

concerning this class .The class  was )0,,,0,(  bT  introduced by Srivastava and Owa[3]. 

The class ),,,,(  bT  was introduced by Atshan and Kulkarni[1]. 
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Definition (1):We say that the function  of complex variable is analytic in a domain D if is differentiable at every 

point in that domain D. 

Definition (2): A function  analytic in a domain D is said to be univalent there if it does not take the same value twice 

that is  for all pairs of distinct points and  in D. 

In other word,  is one-to-one (or injective) mapping of D onto another domain. If  assumes the same value more 

than one, then  is said to be multivalent (p-valent) in D. Let  denote the class of functions of the form: 

 

Which are analytic and univalent in the unit disk   zU C z: . If a function  is given by (1) 

and  is defined by  

 

is in the class ,the convolution (or Hadamard product) of and  is defined by 

 

Let  denote the subclass of  consisting of functions of the form: 

 

Definition (3)[4]: A function  is said to be starlike function of order  if and only if 
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We denote the class of all starlike functions of order  in by . 

Definition (4) [4]: A function  is said to be convex function of order  if and only if  
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We denote the class of all convex functions of order  in by . 
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Note that   ,  and , and the Koebe function is starlike but not 

convex, where the Koebe function given by 

 

is the most famous function in the class  , which maps  onto C minus a slit along  the negative real axis from  

to  . 

Definition (5) [4]: A function  analytic in the unit disk  is said to be close-to-convex function of order 

if there is a convex function  such that  
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 for all   Uz           (7) 

We denote by  the class of close-to-convex functions of order  ,  is normalized by the usual 

conditions 01)0()0(  ff  

These functions are connected by the relation . 

Definition (6) [7]: The fractional integral of order )0(    is defined by Where  is an analytic function in a 

simply connected region of Z-plane containing the origin and the multiplicity of 
1)(  tz  is removed by 

requiring to be real when  . 

Definition (7)[7]: The fractional derivative of order  is defined by  

 

Where  is as in Definition (6) and the multiplicity of  is removed like Definition (6). 

Definition (8)[7]:[ Under the Condition of Definition(7)] 

The fractional derivative of order  is defined by 
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From definition (1.1.6) and (1.1.7) by applying a simple calculation, we get 
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Definition(9)[4]: Let  be a topological vector space over the field of C and let  be a subset of  .A point  

is called an extreme point of  if it has no representation of the form  

as a proper convex combination of two distinct points  and  in .  

Definition(10)[4]: Radius of starlikeness of a function  is the largest  for which it is starlike 

in .0rz   

Definition(11)[4]:Radius of convexity of a function  is the largest  for which it is convex 

in .
1
rz   . 

Theorem (1)(Distortion Theorem[4]): For each  
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For each ,0,  zUz equality occurs if and only if  is a suitable rotation of the Koebe function. 

Theorem (2)(Growth Theorem[4]): For each  
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For each 0,  zUz ,equality occurs if and only if  is a suitable rotation of the Koebe function. 

Lemma(1)(Schwarz Lemma): Let  be analytic in the unit disk  with  and  in 

 .Then 1)0( f  and zzf )(  in  .Strict inequality holds in both estimates unless  is a rotation of the disk 

zezf i)( . 

Theorem (2): Let the function  be in the class ),,,,(  bT  .Then 
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The inequalities in (6) and (7) are attained for the function 
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Proof: Using Theorem(1) ,we have 
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From Definition (6), we have 
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Where
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We know that )(n  is a decreasing function of  and 
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Using (9) and (10), we have 
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Which gives (6), we also have 
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Which gives (7). This complete the proof 

Theorem(3): Let the function  be in the class ),,,,(  bT  .Then 
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The inequalities in (11) and (12) are attained for the function  given by (8) 

 

 

Proof: Using Theorem (2), we have 
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By definition (7), we get 
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Since 
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Which gives (11); and 
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Which gives (12). 

Now, we concentrate upon getting the radius of close-to-convexity ,starlikeness and convexity 

Theorem(4): If ),,,,(  bTf  , then  is close-to-convex of order  in ),,,,,(
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Proof: It is sufficient to show that 
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and 

 
Observe that (15) is true if 

 

Solving (17) for z  , we obtain 
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This completes the proof. 

Theorem (5): If ),,,,(  bTf  , then  is starlike of order  in 
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Proof: We must show that 
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by using (16), we observe (18) less than or equal if 
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Solving (19) for z , we obtain 
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This completes the proof. 

Theorem (6): If ),,,,(  bTf   , then  is convex of order  in 
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Proof: If is sufficient to show that 
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By using (16), we observe that (20) is true if  
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solving (21) for z , we obtain 
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This complete the proof.  
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