

Vol. 9, Issue 8, August 2022

Enhanced Controller for Evaluating Intranet Performance Using Deep Generated Firewalls and Neuro-Fuzzy Technique

Minafa-a Thompson Douglas , Prince O. Asagba

PhD Student, Faculty of Natural and Applied Science, Department of Computer Sciences, Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt, Rivers State, Nigeria

Professor, Lecturer of University of Port Harcourt, Department of Computer Sciences, Choba, Rivers State, Nigeria

ABSTRACT: The need to evolve a vibrant and cost-effective Intranet that will help in conserving the expensive Internet Bandwidth becomes inevitable. The Intranet which uses the World-Wide Web technologies to manage and deliver information locally in an efficient manner can now be improved. In addition, Models such Fuzzy Probabilistic, Neural Network, Heuristic Models, Logistic Regression Ensemble, Multi-Gene Genetic Programming Application, Fuzzy Logic, Neuro-Fuzzy, Rules Optimization Based Fuzzy Models and so many more have been used for the management and optimization of Intranet Services. The effectiveness of intranet usage for academic purposes also gives different effectiveness in their academic achievement due to many other external factors such as socio-economic, study habit and facilities resources. In this work, an enhanced controller for evaluating intranet performance using deep generated firewalls and Neuro-fuzzy technique was developed. The Object-Oriented Analysis and Design Methodology was adopted and implementation was done with Java programming language and MySQL as the backend. In addition, the datasets used were trained with Python programming language and Artificial Neural Network. The Enhanced Controller detects and prevents malicious intranet access/usage through a deep generated firewall. The generated firewall of the designed system is a network security system that monitors and controls incoming and outgoing network traffic based on predetermined security rules Neuro Fuzzy Model will be beneficial to the management of the institution as it will serve as a model evaluator, capable of optimizing the routing process of the Campus Intranet. evaluated parameters and technological areas are as a result of the end-users' feedback survey of the existing and proposed systems. The obtained results of the Proposed System performed better than the existing system when compared in terms of Accuracy, Classification Error, Processing Speed, and Area Under Curve.

KEYWORDS: Controller, intranet, deep generated firewalls, neuro-fuzzy

1. INTRODUCTION

The concept of internet and intranet bare similarities and characterization. However, for the purpose of introduction, definition would be limited in scale.

Internet: The Internet is a global network of interconnected networks, connecting private, public, and university networks in one cohesive unit.

Intranet: is the miniature version of the Internet, it is a private enterprise network used by organizations to distribute communications and promote collaboration among the task force and it uses Internet and Web technologies for information gathering and distribution within an organization.

The early adopters of intranet used the newfound technology to: Provide easy access to internal data by publishing the information on departmental intranets; Set up employee self-service Web sites for human resources, payroll, sales, marketing, and training. As the understanding of the new technology progressed, the adopters have used the technology for more complex

Vol. 9, Issue 8, August 2022

applications like: Collaborative workflow managers, scheduling, messaging, and discussion groups; Inventory and logistic management systems; Customer help desk and knowledge management systems. The successful intranets have allowed organizations to: Save money; Increase employee productivity and employee retention; Empower the customer help desk personnel with intranet knowledge management systems, resulting in increased customer satisfaction and retention; Provide competitive advantage by making the product information, production schedules, and the product competitive analysis only a click away. This empowers the sales, marketing, and support group, resulting in increased sales, added revenue, and customer retention. In most organizations, intranets have started as small departmental efforts. An enterprise intranet may be based on Internet and Web technologies in combination with vendor proprietary technologies.

A routing controller supports flexible network activities in a routing model. The routers in an Autonomous System (AS) must distribute the information they learn about how to reach ex- ternal destinations. Unfortunately, today's internal Border Gateway Protocol (iBGP) architectures have serious problems: a "full mesh" iBGP configuration does not scale to large networks and "route reflection" can introduce problems such as protocol oscillations and persistent loops. Instead, we argue that a Routing Control Platform (RCP) should collect information about ex- ternal destinations and internal topology and select the BGP routes for each router in an AS. RCP is a logically centralized platform, separate from the IP forwarding plane, that performs route selection on behalf of routers and communicates selected routes to the routers using the unmodified iBGP protocol. RCP provides scalability without sacrificing correctness. In addition, RCP provides both the intrinsic correctness of a full- mesh iBGP configuration and the scalability benefits of route reflectors.

The need to optimized the network signals cannot be over emphasized as Signal Optimization encompasses the complete set of technologies and strategies a business deploys to improve its network domain functionality. Network and network domain refer to your organization's set of hardware devices, plus the software and supportive technology allowing those devices to connect and communicate with one another. One of the primary goals of network signal optimization is to provide the best possible network experience for users. It enhances the speed, security and reliability of your company's IT ecosystem. Improving that ecosystem seems intuitive in theory, yet it is challenging to master. Signal optimization is essential for business activities that require 24/7 access and real-time usage of digital technology. IT teams use several key metrics to track a successful optimization scheme. These metrics are most effective when viewed together to provide a holistic picture of your network's strengths and weaknesses.

II. RELATED WORKS

According to [1], successful Intranet sites assemble useful information, organize it into logical systems and deliver the information locally in an efficient manner. The Internet on the other hand is a global computer network that links computer networks all over the world by satellite (a machine that is launched into space and moves around earth or another body in space) and telephone (an instrument designed for the simultaneous transmission and reception of the human voice), connecting users with service networks such as email and World Wide Web. The most obvious difference between an Intranet and the Internet is that the Intranet users are workforce of same organization or institution that share information and resources among themselves to facilitate and improve the overall internal communications efforts and strengthens core company values while the internet is a network that connects computer networks around the world to exchange the vast amount of data and information between connected users. (The reverse seems to be the case in many academic institutions in Nigeria as at the time of this study). Intranet designs can assume a less diversified environment than Internet designs.

Routing is accomplished by means of routing protocols that establish mutually consistent routing tables in the router (or switch controller) in the network. Routing protocol is more of a standard method of implementing a particular routing algorithm. Pertinent to routing protocols are routing tables. Whenever a call-setup packet or any packet arrives at router, the router or switch controller consults the routing table to decide the next hop for the packet. This essentially expresses the significance of routing tables and ultimately the essence of routing protocols [2].

A routing controller supports flexible network activities in a routing model. The routers in an Autonomous System (AS) must distribute the information they learn about how to reach ex- ternal destinations. Unfortunately, today's internal Border Gateway Protocol (iBGP) architectures have serious problems: a "full mesh" iBGP configuration does not scale to large networks and "route reflection" can introduce problems such as protocol oscillations and persistent loops. Instead, we argue that a Routing Control Platform (RCP) should collect information about ex- ternal destinations and internal topology and

Vol. 9, Issue 8, August 2022

select the BGP routes for each router in an AS. RCP is a logically centralized platform, separate from the IP forwarding plane, that performs route selection on behalf of routers and communicates selected routes to the routers using the unmodified iBGP protocol. RCP provides scalability without sacrificing correctness. In addition, RCP provides both the intrinsic correctness of a full- mesh iBGP configuration and the scalability benefits of route reflectors.

RCP selects BGP routes on behalf of the routers in an AS using a complete view of the available routes and IGP topology by [3], as shown in Figure 1, RCP has iBGP sessions with each of the routers; these sessions allow RCP to learn BGP routes and to send each router a routing decision for each destination prefix. Un- like a route reflector, RCP may send a different BGP route to each router. This flexibility allows RCP to as- sign each router the route that it would have selected in a full-mesh configuration, while making the number of iBGP sessions at each router independent of the size of the network. We envision that RCP may ultimately ex- change interdomain routing information with neighbouring domains, while still using iBGP to communicate with its own routers.

Figure 1: Schematic Diagram of a Routing Controller (Source: [3])

[4] proposed a Neuro-Fuzzy-based Dynamic Secure Routing Protocol for QoS Frameworks of MANET. The study proposed a routing algorithm "neuro fuzzy based dynamic secure routing (NFBDSR)", in which routing is performed by using Fuzzy Logic Controller (FLC) with neural network. The proposed routing protocol calculated route metric value using four crisp input variables, Processing Capability (PC) of node, Available Bandwidth (AB), Node Mobility (NM), and Node Trust Value (NTV). To calculate the node trust value the authors used Neighbour node Surveillance method. The real-world applications of our algorithm is that it consider MANET environment applications such as multimedia, audio/video, images, animations, graphics, video conferencing, VOIP and webcasting need uninterrupted, rigorous and inflexible Quality of Service (QoS). The NFBDSR routing algorithm detects malicious node that intends to attack the network.

In analysing their results, the authors found out that NFBDSR routing protocol achieves better performance compared to FBRP routing protocol in metrics of throughput, PDR, end-to-end delay, and average jitter, link establishment time and hop count per route in both conditions when malicious node existing and not existing in the network.

The authors did a good job. However, performance evaluation carried out on their study showed latency in the routing process of the current Neuro-fuzzy system due to the absence of an adaptive fire-fly algorithm that would enhance the evaluation process. Secondly, their developed NFBDSR routing algorithm is only limited to the detection of malicious threat to the network and fails to provide deep generative firewalls which will also prevent the detected threat to the network in the longrun.

[5] looked at Fuzzy Deep Generative Design: Integration of Topology Optimization and Generative Models. The study
proposed an artificial intelligent (AI)-based deep generative design framework that is capable of generating numerous design
Copyright to IJARSETWww.ijarset.com19576

Vol. 9, Issue 8, August 2022

options which are not only aesthetic but also optimized for engineering performance. The proposed framework integrates topology optimization and generative models (e.g., generative adversarial networks (GANs)) in an iterative manner to explore new design options, thus generating a large number of designs starting from limited previous design data. In addition, anomaly detection can evaluate the novelty of generated designs, thus helping designers choose among design options. The authors did a good job but failed to illustrate the drawbacks of software intelligence that could be capitalized by hackers.

III. MATERIAL AND METHODS

A. Methodology

The study adopted the Object-Oriented Analysis and Design (OOAD) Methodology for analyzing the Existing System and also designing the New System. The Object-Oriented Analysis and Design Methodology is a software engineering approach that models a system as a group of interacting objects. Analysis involves understanding, finding and describing concepts in the problem domain while design has to do with understanding and defining software solution/objects that represent the analysis concepts and will be implanted in code.

The OOAD paradigm emphasizes modularity and re-usability. Its goal is to satisfy "Open- closed principles", as it supports extension or its module provides standardized ways to add new behaviours or describe new states. Object-oriented modelling typically divides into two aspects of work: the modelling of dynamic behaviours like business processes and use cases, and the modelling of static structures like classes and components. OOA and OOD are the two distinct abstract levels (i.e. the analysis level and the design level) during OOM. The Unified Modelling Language (UML) and SysML are the two popular international standard languages used for object-oriented modelling.

B. Proposed System

The Enhanced Neuro-Fuzzy Model of the study encompasses the design of a Controller for optimizing intranet performance using Deep Generated Firewalls and Adaptive Firefly Algorithm as shown in the architecture figure 2. The design of a Controller for optimizing intranet performance using Deep Generated Firewalls, Adaptive Firefly Algorithm and Artificial Neural Network as depicted in figure 3. The Controller enabled robust evaluation of intranet performance through fuzzybased rules such as if-then. The designed Controller was initialized to process the inputted datasets. The system user views the displayed results on the routing metrics which also illustrates the intranet performance. The designed process consists of an input stage, a processing stage, and an output stage as shown in the data flow diagram in figure 4. Furthermore, the Controller can also be utilized in the controlling of machines as shown in the block diagram in figure 5.

Step 1: Start Step 2: Initialize input and output layers of Neural Networks for training Models Input = 0 Step 3: Increment Input Input = Input + 1 Access Learning Rate of Model Weight Step 4: $W_i^{n+1} = W_i^n + n(y_i - y_1)x_i$ Test Learning Rate of Model Weight Step5: Transfer learned model to output layer of Neural Networks Step 6: Step 7: End

Vol. 9, Issue 8, August 2022

Figure 4: Proposed System Flowchart

Figure 5: block diagram illustration of the Proposed System Design

C. Advantages of the Proposed System

The designed Controller detects and prevents malicious intranet access/usage through a deep generated firewall. The generated firewall of the designed system is a network security system that monitors and controls incoming and outgoing network traffic based on predetermined security rules. The firewall typically establishes a barrier between a trusted internal network and untrusted external network, such as the Internet. Furthermore, the deep generated firewall of the designed system works on the application layer of the Internet protocol suite (e.g., browser, telnet or FTP traffic), and may intercept all packets traveling to or from an application. The deep generated firewall functions by determining whether a process should accept any given connection, and also filter connections by examining the process ID of data packets against a rule set for the local process involved in the data transmission.

IV. SIMULATION & RESULTS

Vol. 9, Issue 8, August 2022

 Table 1: Result of the Enhanced Neuro-Fuzzy Model

Table 2: Result of the Enhanced Neuro-Fuzzy Model (Contd)

SN	STUDENT	DEPT.	MATRIC.	IP ADDRESS	NO. OF	SYSTEM	FIREFLY	SN	STUDENT	DEPT.	MATRIC.	IP ADDRESS	NO. OF	SYSTEM	FIREFLY
			NO.		PARAMETERS	EVALUATION METRICS (%)	REMARK				NO.		PARAMETER	METRICS (%)	REMARK
1	Hear 1	Business	RSI12010/B	172 16 254 1	A	1/	Poor						S		
1.	03011	Admin	M/014	172.10.254.1	-	14	1001	19.	User 19	Law	RSU2019/L	172.34.254.1	4	34	Poor
2.	User 2	Statistics	RSU2019/ST	172.17.254.1	4	48	Fair				W/009				
			/014					20.	User 20	Anatomy	RSU2019/A	172.35.254.1	4	66	Good
3.	User 3	Microbiolog	RSU2019/M	172.18.254.1	4	31	Poor				NT/011				
		y	CB/024					21.	User 21	Food Science	KSU2019/FS	1/2.36.254.1	4	49	Fair
4.	User 4	Linguistics	RSU2019/LI	172.19.254.1	4	32	Poor	22	Utern 22	Theatra Arts	PRI12010/T	172 27 254 1	4	62	Good
			NG/034					22.	Oser 22	Theade Arts	A/022	1/2.5/.254.1	4	02	6000
5.	User 5	Theatre Arts	RSU2019/T	172.20.254.1	4	42	Fair	23.	User 23	Crop Science	RSU2019/CS	172.38.254.1	4	60	Good
~		G	A/010	172 21 264 1		14	D				/014				
0.	Usero	Crop Science	KSU2019/CS	1/2.21.234.1	4	10	Poor	24.	User 24	Geology	RSU2019/G	172.39.254.1	4	56	Fair
7	Heer 7	Geology	RSU2010/G	172 22 254 1	4	35	Fair				E/034				
<i>.</i>	oser /	Geology	F/014	1,2.22.234.1	-	55	1 611	25.	User 25	Microbiolog	RSU2019/M	172.40.254.1	4	71	Excellent
8.	User 8	Biochemistry	RSU2019/B	172.23.254.1	4	69	Good	24	11 26	y y	CB/020	172 41 264 1		12	T ·
		,	CH/016					20.	User 20	Statistics	(020 (020	1/2.41.234.1	4	42	Fair
9.	User 9	Theatre Art	RSU2019/T	172.24.254.1	4	81	Excellent	27	Hear 27	Commuter	RSU2019/CS	172 42 254 1	4	67	Good
			A/012					27.	0364 27	Science	C/017	112.42.204.1	4		ooou
10.	User 10	Computer	RSU2019/CS	172.25.254.1	4	21	Poor	28.	User 28	Clinical	RSU2019/C	172.43.254.1	4	41	Fair
		Science	C/042							Sciences	LS/110				
11.	User 11	Biochemistry	RSU2019/B	172.26.254.1	4	52	Fair	29.	User 29	Nursing	RSU2019/N	172.44.254.1	4	33	Poor
			CH/041				- "				UR/037				
12.	User 12	Music	KSU2019/M	1/2.2/.234.1	4	/4	Excellent	30.	User 30	Marketing	RSU2019/M	172.45.254.1	4	47	Fair
12	User 12	Markating	PSU2010/M	172 28 254 1	4	20	Poor	21		NC	AK/012	172 46 264 1			D
15.	User 15	Marketing	AR/012	1/2.20.254.1	4	20	1001	51.	User 51	Microbiolog	CB/018	1/2.40.234.1	4	57	Poor
14	User 14	Computer	RSU2019/CS	172 29 254 1	4	19	Poor	32	User 32	Linguistics	RSU2019/LI	172 47 254 1	4	52	Fair
		Science	C/033							Linguister	NG/017				
15.	User 15	History	RSU2019/HI	172.30.254.1	4	41	Fair	33.	User 33	Theatre Arts	RSU2019/T	172.48.254.1	4	62	Good
		-	S/014								A/020				
16.	User 16	Mechanical	RSU2019/M	172.31.254.1	4	17	Poor	34.	User 34	Crop Science	RSU2019/CS	172.49.254.1	4	60	Good
		Engineering	EC/042							<u> </u>	/015				~ .
17.	User 17	Philosophy	RSU2019/P	172.32.254.1	4	45	Fair	35.	User 30	Geology	RSU2019/G	172.30.254.1	4	26	Good
10	17	Genterie	HIL/100	173 22 364 1		10	Deee	36	User 36	Biochemistry	RSU2019/B	172 51 254 1	4	71	Excellent
18.	User 18	Geology	EO(122	1/2.33.234.1	4	19	roof	50.	0.561.50	Diocnemistry	CH/026	112.51.254.1	+	<i>,</i> 1	Pacenent
			EG/122								012 020				

Table 3: Result of the Enhanced Neuro-Fuzzy Model (Contd) Table 4: Result of the Enhanced Neuro-Fuzzy Model (Contd)

SN	STUDENT	DEPT.	MATRIC. NO.	IP ADDRESS	NO. OF ASSESSED PARAMETER S	SYSTEM EVALUATION METRICS (%)	FIREFLY MODEL REMARK	SN	STUDENT	DEPT.	MATRIC. NO.	IP ADDRESS	NO. OF ASSESSED PARAMETER	SYSTEM EVALUATION METRICS (%)	FIREFLY MODEL REMARK
37.	User 37	Theatre Art	RSU2019/T	172.52.254.1	4	74	Excellent	55.	User 55	ECPE	IAUE/2019/	172.70.254.1	4	71	Excellent
38.	User 38	Computer Science	RSU2019/CS C/011	172.53.254.1	4	61	Good	56.	User 56	ECPE	PES/0013 IAUE2019/P	172.71.254.1	4	62	Good
39.	User 39	Biochemistry	RSU2019/B CH/021	172.54.254.1	4	19	Poor	57.	User 57	ECPE	LAUE2019/P	172.72.254.1	4	60	Good
40.	User 40	Music	RSU2019/M US/101	172.55.254.1	4	15	Poor	58.	User 58	ECPE	LAUE2019/P	172.73.254.1	4	56	Fair
41.	User 41	Marketing	RSU2019/M AR/112	172.56.254.1	4	70	Excellent	59.	User 59	ECPE	IAUE/2019/ PES/003	172.74.254.1	4	71	Excellent
42.	User 42	Computer Science	RSU2019/CS C/023	172.57.254.1	4	24	Poor	60.	User 60	ECPE	IAUE/2019/ PES/004	172.75.254.1	4	42	Fair
43.	User 43	History	RSU2019/HI S/019	172.58.254.1	4	14	Poor	61.	User 61	ECPE	IAUE/2019/ PES/001	172.76.254.1	4	67	Good
44.	User 44	Mechanical Engineering	RSU2019/M EC/022	172.59.254.1	4	23	Poor	62.	User 62	ECPE	IAUE/2019/ PES/001	172.77.254.1	4	41	Fair
45.	User 45	Philosophy	RSU2019/P HIL/107	172.60.254.1	4	22	Poor	63.	User 63	ECPE	IAUE/2019/ PES/007	172.78.254.1	4	33	Poor
46.	User 46	Physics	RSU2019/P HV/017	172.61.254.1	4	84	Excellent	64.	User 64	ECPE	IAUE2019/P FS/008	172.79.254.1	4	47	Fair
47.	User 47	Zoology	RSU2019/Z	172.62.254.1	4	42	Fair	65.	User 65	ECPE	IAUE/2019/ PES/0010	172.80.254.1	4	37	Poor
48.	User 48	Chemistry	RSU2019/C HM/037	172.63.254.1	4	52	Good	66.	User 66	ECPE	IAUE2019/P ES/020	172.81.254.1	4	52	Good
49.	User 49	Education	RSU2019/E	172.64.254.1	4	50	Good	67.	User 67	ECPE	IAUE2019/P ES/025	172.82.254.1	4	62	Good
50.	User 50	Economics	RSU2019/E	172.65.254.1	4	12	Poor	68.	User 68	ECPE	IAUE2019/P ES/033	172.83.254.1	4	60	Good
51.	User 51	ECPE	IAUE/2019/	172.66.254.1	4	60	Good	69.	User 69	ECPE	IAUE/2019/ PES/029	172.84.254.1	4	67	Good
52.	User 52	ECPE	IAUE/2019/	172.67.254.1	4	19	Poor	70.	User 70	ECPE	IAUE2019/P ES/0016	172.85.254.1	4	41	Fair
53.	User 53	ECPE	IAUE/2019/	172.68.254.1	4	14	Poor	71.	User 71	ECPE	IAUE/2019/ ECE/037	172.86.254.1	4	33	Poor
54.	User 54	ECPE	IAUE/2019/	172.69.254.1	4	42	Fair	72.	User 72	ECPE	IAUE/2019/ ECE/012	172.87.254.1	4	47	Fair
			PES/0012					73.	User 73	ECPE	IAUE2019/E	172.88.254.1	4	37	Poor

Vol. 9, Issue 8, August 2022

Table 5: Result of the Enhanced Neuro-Fuzzy Model (Contd) Table 6: Result of the Enhanced Neuro-Fuzzy Model

	STUDENT	DEPT.	MATRIC.	IP ADDRESS	NO. OF	SYSTEM	FIREFLY								
			NO.		ASSESSED	EVALUATION METRICS (06)	MODEL	SN	STUDENT	DEPT.	MATRIC	IP ADDRESS	NO. OF	SYSTEM	FIREFLY
					S	METRICS (90)	REMARK		01002.11	22111	NO	11 110010200	ACCECCED	EVALUATION	MODEL
74.	User 74	Curriculum	IAUE2019/C	172.89.254.1	4	52	Good				NO.		ASSESSED	EVALUATION	MODEL
			U/017			~	~ .						PARAMETER	METRICS (%)	REMARK
75.	User 75	Management	IAUE2019/	172.90.254.1	4	62	Good						8		
76	User 76	Management	IAUE2019/	172 91 254 1	4	60	Good								~ .
			MGT/015				0000	92.	User 92	Music	IAUE2019/	116.28/254.1	4	22	Good
77.	User 77	Curriculum	IAUE2019/A	172.92.254.1	4	56	Fair				MITS/013				
			CU/011								TATEROOVE	***		<i>(</i> 7	~ .
78.	User 78	Curriculum	LAUE2019/C	172.93.254.1	4	44	Fair	93.	User 93	Microbiolog	IAUE2019/	116.29/254.1	4	6/	Good
79	User 79	Curriculum	IAUE2019/C	172 94 254 1	4	51	Fair			v	MCB/112				
	0000 10	Controllo	U/014	17205 1125 111		21					1100/112			~	~ .
80.	User 80	Curriculum	IAUE2019/C	172.95.254.1	4	37	Poor	94.	User 94	History	IAUE2019/H	116.30/254.1	4	69	Good
			U/024			6	~ .			-	IS/122				
81.	User 81	Microbiolog	IAUE2019/	116.17/254.1	4	6/	Good	05	11 05	N/ ·	TATEOOTO	11/ 01/05/11	,	~	a 1
82.	User 82	History	IAUE2019/H	116.18/254.1	4	69	Good	93.	User 90	Music	IAUE2019/	110.31/204.1	4	01	Good
		,	IS/022								MUS/047				
83.	User 83	Music	IAUE2019/	116.19/254.1	4	61	Good			M	TATESOTO	110 000511	,	47	T ·
0.4	TT	Chamister	MUS/007	116 20/254 1		47	To:-	90.	User 96	Chemistry	IAUE2019/C	110.32/204.1	4	4/	Fair
64.	User 64	Chemistry	HFM/014	110.20/204.1	4	47	ган				HEM/114				
85.	User 85	Crop Science	LAUE2019/C	116.21/254.1	4	33	Fair	07	TT 07	C	TATE 2010/C	116 22/25/11	4	22	To in
		•	S/008					9/	User 97	Crop Science	IAUE2019/C	110.35/204.1	4	22	rair
86.	User 86	Maths	IAUE2019/	116.22/254.1	4	42	Fair				S/078				
07	These 97	Eine Art	MTH/031	116 22/254 1	4	44	Fair	00	TT 00	16.5	TATE 2010/	116 24/254 1	4	75	E
07.	User o/	rine Ait	A/002	110.23/234.1	+	44	ran	50	User 98	IVIUSIC	IAUE2019/	110.34/204.1	4	13	Excellent
88.	User 88	English	IAUE2019/E	116.24/254.1	4	70	Excellent				MUS/078				
		Studies	S/011					00	Unar 00	Diamian	TATIE2010/D	116 25/05/11	4	24	Fair
89.	User 89	Library and	IAUE2019/L	116.25/254.1	4	63	Good	<u>99</u>	User 99	Physics	IAUE2019/P	110.50/204.1	4	54	rair
00	Liver 90	Info. Sci History	IB/003	116 26/254 1	4	22	Fair				HY/078				
50.	030190	rastory	IS	110.20/204.1	+	52	1 611	100	There 100	Mania	IATE:010/	116 26/254 1	4	41	Fair
91.	User 91	Integrated	IAUE2019/I	116.27/254.1	4	41	Fair	100	User 100	IVIUSIC	IAUE2019/	110.30/234.1	4	41	raif
		Science	SC/022								MUS/078				

Figure 6: Enhanced Neuro-Fuzzy Model Result Chart (Users: 1 - 20)

Figure 9: Enhanced Neuro-Fuzzy Model Result Chart (Users: 61-80) Copyright to IJARSET

Figure 7: Enhanced Neuro-Fuzzy Model Result Chart (Users: 21-40)

Figure 8: Enhanced Neuro-Fuzzy Model Result Chart (Users: 41-60)

Figure 10: Enhanced Neuro-Fuzzy Model Result Chart (Users: 81-100)

www.ijarset.com

Vol. 9, Issue 8, August 2022

V. DISCUSSIONS

The Enhanced Neuro-Fuzzy Model of the study encompasses the design of a Controller for optimizing intranet performance using Deep Generated Firewalls and Adaptive Firefly Algorithm as shown in the architecture figure 1. The Controller enabled robust evaluation of intranet performance through fuzzy-based rules such as if-then. The designed Controller was initialized to process the inputted datasets. The system user views the displayed results on the routing metrics which also illustrates the intranet performance.

The datasets were trained with Artificial Neural Network and Python programming language. The Test sets result of the enhanced model is displayed in table 1, table 2, table 3, table 4, table 5, and table 6 respectively. which was tested with structured data sets and used to assess or evaluate the performance of the Enhanced Neuro-Fuzzy Model. Figure 6 to figure 10 respectively show the charts of the Enhance Neuro-Fuzzy Model.

VI. CONCLUSION

The designed Controller detects and prevents malicious intranet access/usage through a deep generated firewall. The generated firewall of the designed system is a network security system that monitors and controls incoming and outgoing network traffic based on predetermined security rules. The firewall typically establishes a barrier between a trusted internal network and untrusted external network, such as the Internet. Furthermore, the deep generated firewall of the designed system works on the application layer of the Internet protocol suite (e.g., browser, telnet or FTP traffic), and may intercept all packets traveling to or from an application. The deep generated firewall functions by determining whether a process should accept any given connection, and also filter connections by examining the process ID of data packets against a rule set for the local process involved in the data transmission.

REFERENCES

- [1] Hildebrand, C. "Face facts: designing a corporate Intranet". Webmaster, Vol. 1, no 8, pp. 34 32, 2017.
- [2] Yashpaul, E.R., & Swarup, A. "Analysis of Equal Cost Adaptive Routing Algorithms Using Connection-Oriented & Connectionless Protocols". World Academy of Science Engineering & Technology, Volume 51, pp. 299 – 302, 2009.
- [3] Viharos, J.Z., & Kis, K.B., "Survey on Neuro-Fuzzy Systems & their applications in Technical Diagnostics & Measurement". Volume 67, pp. 126 136, doi:http://dx.doi.org/10.1016/j.measurement.2015.02.001, SCI, Impact Factor: 1.526, 2015.
- [4] Santosh, S, & Sanjeev, S. "Neuro-Fuzzy based dynamic secure routing protocol for QoS Frameworks of MANET", International Journal of Emerging Technologies, Vol. 10, no 3, pp.286 – 295, 2019.
- [5] Sangeun, O., Yongsu, J., Seongsin, K., & Ikjn, L. "Fuzzy Deep Generative Design: Integration of Topology Optimization & Generative Models". Journal of Mechanical Design, Vol. 141, no 405, pp. 1 – 13, 2019.