Probability of Occurrence of Rainy Day in Indian Context by Extended Statistical Approach

Dhritikesh Chakrabarty
Independent Researcher, Ex Associate Professor, Department of Statistics, Handique Girls' College, Guwahati 781001, Assam, India

Abstract

The empirical definition of probability has, in a recent study, been extended to the situation where outcomes of the associated trials happen automatically. This article, which is based on a study on probability of occurrence of rainy days with a view of obtaining a picture of tendency of rainfall in India, presents the estimates of probability of occurrence of rainy days in each of the 12 months at the 30 stations in India obtained by the application of this extended definition. It has been found that no month at these stations carries proper non-rainfall tendency.

KEYWORDS: Probability, Extended Empirical Definition, Probability of Rainy Days

I. INTRODUCTION

What has happened on phenomenon can be known if its outcomes have not missed and what is happening can also be known if its outcomes are obtainable but what will happen and/or what will be happening is unknown at present if the phenomenon is not deterministic but probabilistic. On the other hand, people's thrust is to know what will happen and/or what will be happening. Statistics, whose theory is based on the concept of probability, is a branch of science which deals with this thrust of human being. Probability, which is a measure of chance of happening/occurrence of an outcome or of an event (or equivalently which measures to what extent an outcome or an event is likely to be happened/occurred), is the basis of statistical methods as well as of statistical tools of analysis of data on phenomena not deterministic in nature. It is not traceable when the development of probability theory had begun [60]. At the same time, it has come to our knowledge that the scientific development of theory of probability till this date is due to the four approaches namely
(1) A-priory Approach or Classical Approach introduced by James Bernoulli [6, 7, 9, 11, 13, 14],
(2) Empirical Approach or Relative Frequency Approach or Statistical Approach developed by von Mises [9, 12, 66],
(3) Modern Approach or Axiomatic Approach developed by Bernstein \& Kolmogorov [4, 56]
and (4) Theoretical Approach as thought of by Chakrabarty [8, 12-19, 32, 35, 36].
Recently the statistical definition of probability introduced by von Mises, which was based on the outcomes of actually performed experimentation, has been extended to the situation where outcomes of the trials happen automatically [40, $45,56,57]$.

In the empirical approach, probability is defined or determined on the basis of random experiment either performing the actual experimentation while in the classical approach probability is defined a-priory without performing the associated actual experimentation. The classical definition of probability, as formulated by Bernoulli, is a theoretical relationship between number of outcomes favorable to the happening of an event and the measure of chance of its happening. Data on outcomes of trials obtained from actual experimentation are not used in this definition. On the other hand, the empirical definition is based on data on outcomes of trials obtained from actual experimentation and it is also a relationship between the number of occurrence of an event and the measure of chance of its occurrence. Similarly, the extended definition of empirical probability is of the same nature as that of empirical definition of probability.

One can think of determining the probability of occurrence of rainy day(s) in a period by the extended empirical definition of probability extended to the situation where outcomes of the trials happen automatically. In the present study, attempt has been made on determining the probability of occurrence of rainy days in a period at a place with application to

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

numerical data on rainy days in the context of India. This article, which is based on a study on probability of occurrence of rainy days with a view of obtaining a picture of tendency of rainfall in India, presents the estimates of probability of occurrence of rainy days in each of the 12 months at the 30 stations in India obtained by the application of this extended definition. It is to be mentioned the studies done so far on tendency of rainfall $[1-3,5,10,26,30,31,33,34,37$, $39,41-44,47-55,58,59,61-65]$ are not based on probabilistic approach.

II. RAINY DAY IN A PERIOD - PROBABILITY OF OCCURRENCE

The classical definition of probability introduced by Bernoulli is as follows:
Suppose, a trial results in N mutually exclusive, exhaustive and equally likely outcomes. If out of these N outcomes, n outcomes are favorable to the happening / occurrence of an event E, then the probability of occurrence of the event E, denoted by $P(E)$, is given/defined by

$$
P(E)=\frac{n}{N}
$$

The extended definition of empirical / statistical probability, extended to the situation where outcomes of the associated trials happen automatically, is as follows:
If in a set of N repetitions of a natural phenomenon happened automatically, an event E has occurred n times then the probability of occurrence of E is given / defined by the limiting value of the ratio $\frac{\mathrm{n}}{\mathrm{N}}$ as $N \rightarrow \infty$
i.e. $P(E)$ can be approximated by the ratio $\frac{\mathrm{n}}{\mathrm{N}}$ provided N is large.

This extended definition of statistical probability can provide estimate of the probability of happening / occurrence of event E.
Let us now consider a period (say month) M.
If the period consists of N days and if out of these N days, n days are favorable to be rainy days
then the probability that a day in the period M, selected at random, is a rainy day is given by the ratio $\frac{n}{N}$ as per the classical definition of probability.
In order to estimate the value of p, the definition of the extended statistical probability can be applied.
Let us consider R repetitions of the period M.
In the R repetitions, there are altogether $R N$ days.
If among these $R N$ days, r days have occurred as rainy
then by the definition of extended statistical probability, the probability that a day in the period M, selected at random, can be approximated by the ratio $\frac{r}{R N}$ as $R \rightarrow \infty$.
Thus the value of $\frac{r}{R N}$ for large R can be accepted as an estimate of the value of p.

III. APPLICATION TO NUMERICAL DATA

The extended empirical definition of probability extended to the situation where outcomes of the trials happen automatically, as mentioned above, have been applied in the data on number of rainy days in each of the 12 months at the following 30 stations in India:

Table - 3.1
Stations under Study

Agartala	Ahmadabad	Allahabad	Amritsar	Bangalore
Bhopal	Bhubaneswar	Bhunter	Chennai	Guwahati
Hisar	Hyderabad	Imphal	Jaipur	Kolkata
Lucknow	Mumbai	Nagpur	New Delhi	Palam
Panjim	Patna	Pondicherry	Port Blair	Pune
Shillong	Tezpur	Trivandrum	Udaipur	Varanasi

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

The data have been collected from Indian Meteorological Department [10, 26, 31]. The dataset, that have been found available from the year 1969 onwards, consist of number of rainy days occurred in each of the 12 months at the above stations corresponding to the years.
The probability that a day in a month, selected at random, is rainy has been calculated by the extended definition of statistical probability for each of the 12 months and at each of the 30 stations. The estimated values obtained have been presented in Table - 5.1.

IV. RESULT AND DISCUSSION

If the probability of occurrence of a rainy day at a place during a period is 0 then the period can be regarded as a period having perfect non-rainfall tendency.
In reality, there may be rainfall during a period having non-rainfall tendency due to some random cause that occurs accidently but not regularly and not always so that the probability of occurrence of a rainy day in that period is very small (near to 0).
Thus, if the probability of occurrence of a rainy day in a period is not 0 but very small (near to 0) then the period can be regarded as a period having significant non-rainfall tendency.
The non-rainfall tendency of the period can be regarded as
significant or
highly significant
or almost fully significant
in accordance with the value of the probability of occurrence of a rainy day in the period is

$$
\begin{aligned}
& <0.05 \text { but }>0.01 \\
\text { or } & <0.01 \text { but }>0.0027 \\
& \text { or }<0.0027
\end{aligned}
$$

respectively.
The months having non-rainfall tendency of different levels identified from the numerical findings of the estimates of the probabilities, shown in Table-5.1, have been presenred in Table-5.2.

It is to be mentioned that the findings obtained in this study are based on the assumption that data used in the analysis satisfy the condition(s) under which the definition of probability is valid. Thus the accuracy of findings is subject to the validity of this assumption.

At this stage, it can be concluded that the extension of its empirical definition extended to the situation where outcomes of the associated trials happen automatically can be a convenient tool of estimating/approximating the probability occurrence of a rainy day at a place in a period. This tool can be used in estimating/approximating the probability occurrence of a rainy day in a period at other places not considered in this study. Thus one problem for researchers, at this stage, is to go for study the same at the other places of the globe by the application of this definition of probability. This type of study will carry significance in the interest of the globe.

It is to be mentioned thay in this study attempt has been made on estimating/approximating the probability occurrence of a rainy day at a place in a period. This has been done by the extension of its empirical definition extended to the situation where outcomes of the associated trials happen automatically. There is possible scope of applying this definition of probability, along with its classical definition, in estimating number days favorable to be rainy as well as expected number [46] of rainy days in a given period at a place.

Finally, one can conclude that the the extended definition of empirical probability extended to the situation where outcomes of the associated trials happen automatically can be a useful statistical tool of analysis of data obtained from automatically happened or naturally happened phenomena. Therefore, as per the meaning of research [20-25, 27$29,38,47]$, the innovation of this extended definition of empirical probability can be regarded as a fundamental research carrying significant potentiality of application in analysis of data.

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

V. TABLES OF FINDINGS

Table - 5.1
Probability that of a Day in a month, Selected at Random, is Rainy

Month	Estimated Value of Probability				
	Agartala	Ahmadabad	Allahabad	Amritsar	Bangalore
January	0.0206	0.015	0.0524	0.0655	0.00615
February	0.0786	0.0126	0.0413	0.1147	0.01652
March	0.1045	0.0034	0.0242	0.1105	0.02218
April	0.288	0.0144	0.0219	0.0677	0.09479
May	0.4206	0.0246	0.0343	0.0694	0.22278
June	0.504	0.0629	0.151	0.1192	0.20521
July	0.5097	0.0865	0.3861	0.2933	0.23185
August	0.4994	0.0854	0.3777	0.2385	0.33468
September	0.3907	0.0677	0.2817	0.0094	0.33229
October	0.2142	0.0276	0.0583	0.0353	0.25907
November	0.0653	0.0254	0.0172	0.0172	0.13125
December	0.0219	0.0150	0.0135	0.0384	0.05746

Table-5.1: Continuation (1)
Probability that of a Day in a month, Selected at Random, is Rainy

Month	Estimated Value of Probability				
	Bhopal	Bhubaneswar	Bhunter	Chennai	Guwahati
January	0.0409	0.0131	0.1873	0.0366	0.0415
February	0.0393	0.0635	0.2247	0.0190	0.0727
March	0.0183	0.0538	0.2612	0.0118	0.1290
April	0.0149	0.0667	0.1871	0.0267	0.3057
May	0.0300	0.1279	0.2029	0.0473	0.4160
June	0.2345	0.3333	0.1478	0.1522	0.4931
July	0.4583	0.4862	0.2882	0.2172	0.5495
August	0.4694	0.5012	0.2828	0.2581	0.4160
September	0.2556	0.3964	0.1622	0.2478	0.3345
October	0.0623	0.2385	0.0614	0.3247	0.1602
November	0.0368	0.0617	0.0511	0.3433	0.0513
December	0.0207	0.0143	0.0823	0.1742	0.0232

Table-5.1: Continuation (2)
Probability that of a Day in a month, Selected at Random, is Rainy

Month	Estimated Value of Probability				
	Hisar	Hyderabad	Imphal	Jaipur	Kolkata
January	0.0401	0.0172	0.0394	0.0171	0.0334
February	0.0552	0.0154	0.1186	0.0368	0.0663
March	0.0479	0.0183	0.1970	0.0141	0.0749
April	0.0384	0.0478	0.3299	0.0240	0.0988
May	0.0587	0.0828	0.3359	0.0474	0.2200
June	0.1188	0.24	0.5149	0.1258	0.4214
July	0.2395	0.3115	0.5095	0.3288	0.5680
August	0.2097	0.3516	0.4160	0.3039	0.5415
September	0.1	0.2556	0.3138	0.1189	0.4429
October	0.0244	0.1849	0.2102	0.0364	0.2108
November	0.0104	0.0644	0.1083	0.0161	0.0405
December	0.0212	0.1222	0.0363	0.0104	0.0219

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

Table - 5.1: Continuation (3)
Probability that of a Day in a month, Selected at Random, is Rainy

Month	Estimated Value of Probability				
	Lucknow	Mumbai	Nagpur	New Delhi	Palam
January	0.0416	0.0020	0.0400	0.4747	0.0484
February	0.0565	0.0034	0.0530	0.0603	0.0584
March	0.0292	0.0010	0.0430	0.0504	0.0430
April	0.0194	0.0031	0.0333	0.0396	0.0424
May	0.0562	0.0242	0.0541	0.0575	0.0583
June	0.1656	0.4365	0.2833	0.1495	0.1212
July	0.3809	0.7294	0.4472	0.3353	0.3167
August	0.3559	0.6956	0.4338	0.3185	0.2942
September	0.2806	0.4615	0.2711	0.1615	0.1510
October	0.0468	0.1179	0.0968	0.0383	0.0371
November	0.0161	0.0344	0.0345	0.0146	0.0146
December	0.0208	0.0100	0.0253	0.0313	0.0242

Table - 5.1: Continuation (4)
Probability that of a Day in a month, Selected at Random, is Rainy

Month	Estimated Value of Probability				
	Panjim	Patna	Pondicherry	Port Blair	Pune
January	0.0032	0.0452	0.0344	0.0538	0.0039
February	0.0012	0.043	0.0214	0.0357	0.0054
March	0.0011	0.0300	0.0194	0.0333	0.0078
April	0.0156	0.0333	0.0111	0.1409	0.0293
May	0.1011	0.0946	0.0523	0.5141	0.0743
June	0.7111	0.2111	0.09	0.6129	0.3
July	0.8452	0.4638	0.1570	0.6087	0.3939
August	0.7763	0.4093	0.2054	0.5911	0.3030
September	0.4122	0.3333	0.2056	0.5989	0.2455
October	0.1871	0.1046	0.3140	0.4766	0.1437
November	0.0778	0.0111	0.37	0.4140	0.0495
December	0.00651	0.0167	0.2054	0.1394	0.0127

Table - 5.1: Continuation (5)
Probability that of a Day in a month, Selected at Random, is Rainy

Month	Estimated Value of Probability				
	Shillong	Tezpur	Trivandrum	Udaipur	Varanasi
January	0.0484	0.0478	0.0323	0.0097	0.0484
February	0.0753	0.0689	0.0509	0.0127	0.0582
March	0.1279	0.1279	0.0753	0.0042	0.0174
April	0.2869	0.3529	0.2189	0.0189	0.0148
May	0.5104	0.4049	0.3140	0.0419	0.0422
June	0.6274	0.5046	0.5433	0.1589	0.1449
July	0.5910	0.5295	0.4333	0.2636	0.4194
August	0.4988	0.4238	0.3323	0.3192	0.4126
September	0.5476	0.3954	0.2967	0.1690	0.3154
October	0.2684	0.1824	0.3720	0.0495	0.0695
November	0.0872	0.0536	0.3078	0.0230	0.0192
December	0.0409	0.0382	0.1398	$\mathbf{0 . 0 0 7 8}$	0.0202

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

Table - 5.2
Month having Non-rainfall Tendency

Station	Month having Non-rainfall Tendency		
	Significant	Highly Significant	Almost Fully Significant
Agartala	January, December	Nil	Nil
Ahmadabad	January, February, April , May, October, November, December	March	Nil
Allahabad	February, March , April , May, November, December	Nil	Nil
Amritsar	October, November, December	September	
Bangalore	February, March ,	January	
Bhopal	January, February, March , April, May, November , December	Nil	Nil
Bhubaneswar	January, December	Nil	Nil
Bhunter	Nil	Nil	Nil
Chennai	January, February, March , April, May,	Nil	Nil
Guwahati	January, December	Nil	Nil
Hisar	January , March , April , October, November, December	Nil	Nil
Hyderabad	January, February, March , April,	Nil	Nil
Imphal	January, December	Nil	Nil
Jaipur	January, February, March , April , May, October , November, December	Nil	Nil
Kolkata	January , November , December	Nil	Nil
Lucknow	January, March , April , October, November, December	Nil	Nil
Mumbai	May	November	January, February, March, April
Nagpur	January, March , April , November, December	Nil	Nil
New Delhi	January, April , October , November, December	Nil	Nil

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

Palam	January, April, October, November, December	Nil	Nil
Panjim	April	December	January, February, March
Patna	January, February, March, April, November, December	Nil	Nil
Pondicherry	January, February, March, April	Nil	Nil
Port Blair	February, March	Nil	Nil
Pune	April, November, December	January, February, March	Nil
Shillong	January, December	Nil	Nil
Tezpur	January, December	Nil	Nil
Trivandrum	January	Nil	Nil
Udaipur	May, October, November Varanasi	January, February, March, April, December	Nil
January, March, April, May , November, December	Nil		

REFERENCES

[1] Arati Paul, Riddhidipa Bhowmik et al (2017): "Trend Analysis of Time Series Rainfall Data Using Robust Statistics", Journal of Water and Climate Change, 8(4): 691-700. https://doi.org/10.2166/wcc.2017.141.
[2] Atul Saini, Netrananda Sahu et al (2020): "Advanced Rainfall Trend Analysis of 117 Years over West Coast Plain and Hill Agro-Climatic Region of India", Atmosphere, 11(11), 1225; https://doi.org/10.3390/atmos11111225.
[3] Bisht D. S., Chatterjee C. et al (2018): "Spatio-temporal Trends of Rainfall across Indian River Basins", Theoretical and Applied Climatology, 132(1 -2), 419 - 436.
[4] Breiman L. (1968): "Probability", Addison-Wesley, Reading, MA.
[5] Caloiero T., Coscarelli R. \& Pellicone G. (2021): "Trend Analysis of Rainfall Using Gridded Data over a Region of Southern Italy", Water 2021, 13, 2271. https://doi.org/10.3390/w13162271.
[6] Dhritikesh Chakrabarty (2002) : "Equivalent Sample Space Approach in Probability ", Proceedings of the $47^{\text {th }}$ Annual Technical Session, Ass. Sc. Soc., 3, $28-40$. https://www.researchgate.net/publication/323150768 Equivalent Sample Space Approach in Probability?
[7] Dhritikesh Chakrabarty (2003) : " Multifaced-Body Throwing Experiment and Most Likely Event ", Proceedings of the $48^{\text {th }}$ Annual Technical Session, Ass. Sc. Soc., 4, 1-6. https://www.researchgate.net/publication/323150865_Multifaced-
Body_Throwing_Experiment_and_Most_Likely_Event?
[8] Dhritikesh Chakrabarty (2004): "A Theoretical Definition of Probability Based on Common Sense", Bulletin of Pure and Applied Sciences - E (ISSN : 0970-6577), 23E(2), 343-349.
https://www.researchgate.net/publication/265315010_A_theoretical_definition_of_probability_based_on_common_sense
[9]. Dhritikesh Chakrabarty (2005): "Probability: Link Between the Classical Definition and the Empirical Definition", J. Ass. Sc. Soc. (ISSN: 05871921), 45 (June), $13-18$.
https://www.researchgate.net/publication/322759139 Probability Link Between the Classical Definition and the Empirical Definition
[10] Dhritikesh Chakrabarty (2005): "Probabilistic Forecasting of Time Series", Report (Thesis) of Post Doctoral Research Project, University Grants Commission, DOI: 10.13140/RG.2.2.12952.98569. https://www.researchgate.net/publication/358634406 Post Doc Research - Report Thesis
[11] Dhritikesh Chakrabarty (2006): "Non-Equally Likely Outcomes: The Classical Definition of Probability", Bulletin of Pure and Applied Sciences - E (ISSN : 0970 -6577), $25 \mathrm{E}(2), 471-481$. https://www.researchgate.net/publication/264911628 Non-
equally likely outcomes the classical definition of probability
[12] Dhritikesh Chakrabarty (2007): "Empirical Definition of Probability: Special Case of Its Theoretical Definition", Int. J. Agricult. Stat. Sci., (ISSN: 0973-1903), 3(1), 261-267.
https://www.researchgate.net/publication/267078755 Empirical definition of probability Special case of its theoretical definition
[13] Dhritikesh Chakrabarty (2008): "Bernoulli's Definition of Probability: Special Case of Its Chakrabarty's Definition", Int. J. Agricult. Stat. Sci., (ISSN : 0973-1903), 4(1), 23-27.
https://www.researchgate.net/publication/265477707 Bernoulli's definition of probability special case of its Chakrabarty's definition [14] Dhritikesh Chakrabarty (2009): "Probability: Chakrabarty's Definition from its Classical Definition", Int. J. Agricult. Stat. Sci., (ISSN : 0973 1903), 5(1), 181 - 187.
https://www.researchgate.net/publication/299265157_PROBABILITY_CHAKRABARTY'S_DEFINITION_FROM_ITS_CLASSICAL_DEFINITI ON

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

[15] Dhritikesh Chakrabarty (2010): "A Method of Determining the Value of Probability", Int. J. for Statiscians, (ISSN: 2077-480X), 1 (1), 5 - 7. https://www.researchgate.net/publication/322758586 A Method of Determining the Value of Probability
[16] Dhritikesh Chakrabarty (2010): "Probability As The Maximum Occurrence of Relative Frequency", Arya Bhatta Journal of Mathematics \& Informatics., 2 (2), 339 - 344. www.abjni.com .
[17] Dhritikesh Chakrabarty (2010): "Chakrabarty's Definition of Probability: Proper Randomness of Fisher and Yates Random Number Table", Int. J. Agricult. Stat. Sci., 6 (2), (ISSN: 0973 - 1903), 461 - 469.
https://www.researchgate.net/publication/289843999 Chakrabarty's definition of probability Proper randomness of fisher and yates random nu mber_table
[18] Dhritikesh Chakrabarty (2010): "Chakrabarty's Definition of Probability: Additive and Multiplicative Laws", Bulletin of Pure and Applied Sciences - E (Print ISSN : 0970 -6577), 29E(2), 265 - 274. Online published on 22 February, 2013 (Online ISSN: 2320-3226). https://www.researchgate.net/publication/267991650_Chakrabarty's_definition_of_probability_additive_and_multiplicative_laws
[19] Dhritikesh Chakrabarty (2011): "Probability in Ideal Situation and in Practical Situation", Arya Bhatta J. Math. \& Info. , 3 (1), 161 - 168. www.abjni.com .
[20] Dhritikesh Chakrabarty (2011): "Application of Statistics in Information Extraction", Regional Seminar on Frontiers of Technology and State of Art Electronics as Application Tools, Electronic Scientist \& Engineers Society, December 23 - 24, 2011. DOI: 10.13140/RG.2.2.15611.90409 .
[21] Dhritikesh Chakrabarty (2012): "Statistics: Analytical Tool for Scientific Research and Investigation", National Seminar on Biological Diversity \& Environment, Held at Bholanath College, Assam, June 27 - 28 , 2012. DOI: 10.13140/RG.2.2.34073.39520
[22] Dhritikesh Chakrabarty (2013): "Statistics as Essential Tool for Research in Bioscience", National Seminar on Bio-Resources of North East India and Their Conservation, Zoological Society of Assam, March 22 - 23, 2013. DOI: 10.13140/RG.2.2.20645.06887 .
[23] Dhritikesh Chakrabarty (2013): "Application of Statistics: Research \& Investigation in the field of Bio-Diversity", National Seminar on Emergent Conservation of Bio-Diversity:, Held at Nabajyoti College in collaboration with Assam Science Society, May 22 - 23 , 2013. DOI: 10.13140/RG.2.2.25068.74888 .
[24] Dhritikesh Chakrabarty (2013): "A Journey for Understanding the Space of Research", National Seminar on Promotion of Research Culture in Enhancing Quality Higher Education, Held at Bimala Prasad Chaliha College in collaboration with Assam College Teachers' Association, June 26 28, 2013. DOI: 10.13140/RG.2.2.25678.23364 .
[25] Dhritikesh Chakrabarty (2014): "Statistical Method of Studying the Change in Climatic Component with Reference to Temperature in Assam", National Seminar on Social Issues and the Environment, held at Dakshin Kamrup College in collaboration with Indian Association of Physics Teachers, January 31- February 01, 2014. DOI: 10.13140/RG.2.2.22784.81923
[26] Dhritikesh Chakrabarty (2014): "Natural Limits of Annual Total Rainfall in the Context of India", Int. J. Agricult. Stat. Sci., 10(1), (ISSN: 0973 1903), 105 - 109. https://www.researchgate.net/publication/296323600_Natural_limits_of_annual_total_rainfall_in_the_context_of_India
[27] Dhritikesh Chakrabarty (2018): "Understanding the Space of Research", Biostatistics and Biometrics Open Access Journal, (ISSN: 2573-2633), 4(5), 001 - 017: DOI: 10.19080/BBOAJ.2018.04.555642.
[28] Dhritikesh Chakrabarty (2018): "Statistics and Bioscience: Association in Research", Significances of Bioengineering \& Biosciences, (ISSN 26378078), 2(5), 001 - 007: SBB.000546.2018. DOI: 10.31031/SBB.2018.02.000546.
[29] Dhritikesh Chakrabarty (2019): "Association of Statistics with Biostatistics Research", Biometrics \& Biostatistics International Journal, 8(3), 104 - 109. DOI: 10.15406/bbij.2019.08.00279 . http://medcraveonline.com .
[30] Dhritikesh Chakrabarty (2019): "Significance of Change of Rainfall: Confidence Interval of Annual Total Rainfall", Journal of Chemical, Biological and Physical Sciences (E- ISSN: 2249 - 1929), Sec. C, 9(3), 151 - 166. www.jcbsc.org . DOI: 10.24214/jcbps.C.9.
[31] Dhritikesh Chakrabarty (2021): "Annual Total Rainfall in India: Confidence Interval and Significance of Change", International Journal of Advanced Research in Science, Engineering and Technology, (ISSN: 2350-0328), 8(11), 18540 - 18550. www.ijarset.com .
[32] Dhritikesh Chakrabarty (2022): "Latest Definition of Probability: Link with Its Earlier Definitions", Uploaded in Research Gate on May 15, 2022. DOI: 10.13140/RG.2.2.28013.15844.
https://www.researchgate.net/publication/360612422_Latest_Definition_of_Probability_Link_with_Its_Earlier_Definitions?
[33] Dhritikesh Chakrabarty (2022): "Integral Valued Numerical Data: Measure of Central Tendency", Partners Universal International Research Journal (PUIRJ), 01(03), 74 - 82. www.puirj.com . DOI:10.5281/zenodo.7123662 .
[34] Dhritikesh Chakrabarty (2022): "Determination of Tendency of Rainfall at Delhi and Mumbai", International Journal of Advanced Research in Science, Engineering and Technology, (ISSN : 2350-0328), 9(12), 20210-20219. www.ijarset.com .
[35] Dhritikesh Chakrabarty (2022): "Latest Definition of Probability: Link with Its Earlier Definitions", Unpublished Research Paper, Uploaded in $\begin{array}{lllllll}\text { Research } & \text { Gate } & \text { on } & \text { May } & 15, & \text { DOI: 10.13140/RG.2.2.28013.15844. }\end{array}$ https://www.researchgate.net/publication/360612422_Latest_Definition_of_Probability_Link_with_Its_Earlier_Definitions
[36] Dhritikesh Chakrabarty (2022): "Probability in Practically Ideal Situation", Unpublished Research Paper, Uploaded in Research Gate on September 23, 2022 DOI: 10.13140/RG.2.2.23818.85443. https://www.researchgate.net/publication/363771306_PROBABILITY_IN_PRACTICALLY_IDEAL_SITUATION
[37] Dhritikesh Chakrabarty (2022): "Method of Determination of Central Tendency of Non-negative Integral Valued Data: Application in Rainfall Data at Mumbai", Partners Universal International Research Journal (PUIRJ), ISSN: 2583-5602, 01(04), 67 - 74. www.puirj.com . DOI:10.5281/zenodo.7422267.
[38] Dhritikesh Chakrabarty (2022): "Association of Statistics with Bioscience Research", Unpublished Research Paper in Research Gate on October 22, 2022. DOI: 10.13140/RG.2.2.31368.60162.
https://www.researchgate.net/publication/364638208 Association of Statistics with Bioscience Research .
[39] Dhritikesh Chakrabarty (2023): "Determination of Tendency of Rainfall in India Described by Number of Rainy Days", Partners Universal International Research Journal (PUIRJ), ISSN: 2583-5602, 02(01), 95 - 102. www.puirj.com . DOI:10.5281/zenodo. 7770100 .
[40] Dhritikesh Chakrabarty (2023): "Definition of Probability Based on Already Happened Outcomes: Application in Identifying Rainy and NonRainy Period", Partners Universal International Innovation Journal (PUIIJ), 01(04), 259 - 267. www.puiij.com . DOI:10.5281/zenodo.8282811.
[41] Dhritikesh Chakrabarty (2023): "Determination of Tendency of Rainfall in India Described by Number of Rainy Days", Preprint, March 2023. DOI: 10.13140/RG.2.2.20709.99046 .
[42] Dhritikesh Chakrabarty (2023): "Numbers of Rainy Days at Chennai, Kolkata, Mumbai, and New Delhi: Most Likely to Occur", Partners Universal International Research Journal (PUIRJ), ISSN: 2583-5602, 02(03), 210 - 217. www.puirj.com . DOI:10.5281/zenodo.8372740.

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

https://www.researchgate.net/publication/374265699 Numbers of Rainy Days at Chennai Kolkata Mumbai and New Delhi Most Likely to O ccur
[43] Dhritikesh Chakrabarty (2023): "Probability of Occurrence of Rainy Days: Non-Rainfall Tendency in India", International Journal of Advanced Research in Science, Engineering and Technology, (ISSN: 2350-0328), 10(9), 21018 - 21025. www.ijarset.com https://www.researchgate.net/publication/374338060 Probability of Occurrence of Rainy Days Non-Rainfall Tendency in India
[44] Dhritikesh Chakrabarty (2023): "Determination of Tendency of Rainfall in India Described by Number of Rainy Days", Partners Universal International Research Journal (PUIRJ), ISSN: 2583-5602, 02(01), 95 - 102. www.puirj.com . DOI:10.5281/zenodo. 7770100 .
[45] Dhritikesh Chakrabarty (2023): "Definition of Probability Based on Automatically happened outcomes: Application in Identifying Rainy and Non-Rainy Period", Partners Universal International Innovation Journal (PUIIJ), 01(04), 259 - 267. www.puiij.com . DOI:10.5281/zenodo.8282811.
[46] Dhritikesh Chakrabarty (2023): "Concept of Statistical Probability: Mathematical Expectation of Number of Rainy Days", International Journal of Electronics and Applied Research (ISSN: 2395-0064), 10(1), 18-35. http://eses.net.in/online journal.html .
[[47] Dhritikesh Chakrabarty (2023): "Probability Distribution of Rainy Days at Metropolitan Cities in India", International Journal of Advanced Research in Science, Engineering and Technology, (ISSN: 2350 - 0328), 10(9), 21220 - 21229. www.ijarset.com https://www.researchgate.net/publication/376184052 Probability Distribution of Rainy Days at Metropolitan Cities in India
[48] Deepak Jhajharia, Brijesh K. et al (2012): "Identification of Ttrends in Rainfall, Rainy Days and 24 h Maximum Rainfall over Subtropical Assam in Northeast India", Comptes Rendus Geoscience, 344(1), 1-13. https://doi.org/10.1016/j.crte.2011.11.002 .
[49] Goswami B. N., Venugopal V. et al (2006): "Increasing Trend of Extreme Rain Events Over India in a Warming Environment", Science, 314(5804), 1442 - 1445.
[50] Guhathakurta P. \& Rajeevan M. (2008); "Trends in the Rainfall Pattern over India", International Journal of Climatology", 28, 1453 1469.
[51] Hills R. C. (974): "The Presentation of Central Tendencies in Rainfall Statistics", East African Agricultural and Forestry Journal, 39(4), 424-430. https://doi.org/10.1080/00128325.1974.11662670.
[52] Jagannathan P. \& Parthasarathi B. (1973): "Trends and Periodicities of Rainfall Over India", Monthly Weather Review, 101(4), 371 - 375. DOI: https://doi.org/10.1175/1520-0493(1973)101<0371:TAPORO>2.3.CO;2 .
[53] Jain S. K. \& Kumar V. (2012): "Trend Analysis of Rainfall and Temperature Data for India", Current Science, $102(1), 37$ - 49.
[54] Jain S. K, Kumar V. \& Saharia M. (2013): "Analysis of Rainfall and Temperature Trends in Northeast India", International Journal of Climatology, 33(4), 968 - 978.
[55] Kammun (2019), "Rainfall Analysis - A Review", International Research Journal of Engineering and Technology, 6(12) 2614 - 2617.
[56] Kolmogorov A. N. (1933): "Grunbegriffe der Wahrscheinlichkeits Rechnung ", Ergeb. Math. and ihrer Grensg., 2, 62 - 88. (The Monograph Published by Springer, Berlin, 1933).
[57] Kolmogorov A. N. (1956): "Foundations of the Theory of Probability", 2nd English Edition, Chelsea Publishing Company, New York: A Translation of Grundbergriffe der Wahrscheinlichkeitsrechnung.
[58] Liu Q., Zou Y. et al (2019): "A Survey on Rainfall Forecasting Using Artificial Neural Nnetwork", IJES, 11(2), 240 - 249.
[59] Mooley D. A. \& Parthasarthy B. (1984): "Fluctuations of All India Summer Monsoon Rainfall during 1871-1978", Climatic Change, 6, 287-301.
[60] Maistrov L. E. (1974): "Probability Theory: A Historical Sketch", Academic Press, New York \& London.
[61] Namdev K., Madan S. (2021), "Study of Rainfall Variation in Parbhani District of Maharashtra (2000-2016)", International Journal of Creative Research Thoughts, 9(6), 135-140.
[62] Nikumbh A. C., Chakraborty A. \& Bhat G. S. (2019): "Recent Spatial Aggregation Tendency of Rainfall Extremes over India", Sci Rep, 9, 10321. https://doi.org/10.1038/s41598-019-46719-2 .
[63] Rao V. B., Sergio H. F. et al (2015): "An update on the rainfall characteristics of Brazil: seasonal variations and trends in $1979-2011 "$, International Journal of Climatology, 36(1), 291 - 302. https://doi.org/10.1002/joc. 4345 .
[64] Tank G., Dongre P, et al (2021): "Rainfall Trend Analysis - A Review", International Research Journal of Engineering and Technology, 8(4), 4028-4030.
[65] Subodh Kant Pandey \& H. L. Tiwari (2021): "Rainfall Trend Detection - A Review", International Journal of Creative Research Thoughts, 9(11), 521-524. www.ijcrt.org .
[66] von Mises R. (1931): "Wahrscheinlichkeits Rechnung. (English Edition: "Mathematical Theory of Probability and Statistics", Academic Press, New York.

AUTHOR'S BIOGRAPHY

Dr. Dhritikesh Chakrabarty passed B.Sc. (with Honours in Statistics) Examination from Darrang College, Gauhati University, in 1981 securing $1^{\text {st }}$ class \& $1^{\text {st }}$ position. He passed M.Sc. Examination (in Statistics) from the same university in the year 1983 securing $1^{\text {st }}$ class \& $1^{\text {st }}$ position and successively passed M.Sc. Examination (in Mathematics) from the same university in 1987 securing $1^{\text {st }}$ class ($5^{\text {th }}$ position). He obtained the degree of Ph.D. (in Statistics) in the year 1993 from Gauhati University. Later on, he obtained the degree of Sangeet Visharad (inVocal Music) in the year 2000 from Bhatkhande Sangeet vidyapith securing $1^{\text {st }}$ class, the degree of Sangeet Visharad (in Tabla) from Pracheen Kala Kendra in 2010 securing $2^{\text {nd }}$ class, the degree of Sangeet Pravakar (in Tabla) from Prayag Sangeet Samiti in 2012 securing $1^{\text {st }}$ class, the degree of Sangeet Bhaskar (in Tabla) from Pracheen Kala Kendra in 2014 securing $1^{\text {st }}$ class and Sangeet Pravakar (in Guitar) from Prayag Sangeet Samiti in 2021 securing 1 ${ }^{\text {st }}$ class. He obtained Jawaharlal Nehru Award for securing $1^{\text {st }}$ position in Degree Examination in the year 1981. He also obtained Academic Gold Medal of Gauhati University and Prof. V. D. Thawani Academic Award for securing $1^{\text {st }}$ position in Post Graduate Examination in the year 1983.

ISSN: 2350-0328
International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023
Dr. Dhritikesh Chakrabarty also did post doctoral research under the Post Doctoral Research Award by the University Grants Commission for the period 2002-05.

(Dr. Dhritikesh Chakrabarty, 3rd from the left, with some research scientists in The 3rd International Conference on Fuzzy Systems and Data Mining (FSDM 2017) held at National Dong Hwa University, Hualien, Taiwan, during Nov 24-27, 2017)

He attended five of orientation/refresher course held in Gauhati University, Indian Statistical Institute, University of Calicut and Cochin University of Science \& Technology sponsored/organized by University Grants Commission/Indian Academy of Science. He also attended/participated eleven workshops/training programmes of different fields at various institutes.

Dr. Dhritikesh Chakrabarty, currently an independent researcher, served Handique Girls' College, Gauhati University, during the period of 34 years from December 09, 1987 to December 31, 2021, as Professor (first Assistant and then Associate) in the Department of Statistics along with Head of the Department for 9 years and also as Vice Principal of the college. He also served the National Institute of Pharmaceutical Education \& Research (NIPER) Guwahati, as guest faculty (teacher cum research guide), during the period from May, 2010 to December, 2016. Moreover, he is a Research Guide (Ph.D. Guide) in the Department of Statistics of Gauhati University and also a Research Guide (Ph.D. Guide) in the Department of Statistics of Assam Down Town University. He has been guiding a number of Ph.D. students in the two universities. He acted as Guest Faculty in the Department of Statistics and also in the Department of Physics of Gauhati University. He also acted as Guest Faculty cum Resource Person in the Ph.D. Course work Programme in the Department of Computer Science and also in the Department of Biotechnology of the same University for the last six

ISSN: 2350-0328

International Journal of AdvancedResearch in Science, Engineering and Technology

Vol. 10, Issue 12, December 2023

years. Dr. Chakrabarty has been working as an independent researcher for the last more than thirty years. He has already been an author of 260 published research items namely research papers, chapter in books / conference proceedings, books etc. He visited U.S.A. in 2007, Canada in 2011, U.K. in 2014 and Taiwan in 2017. He has already completed one post doctoral research project $(2002-05)$ and one minor research project $(2010-11)$. He is an active life member of the academic cum research organizations namely (1) Assam Science Society (ASS), (2) Assam Statistical Review (ASR), (3) Indian Statistical Association (ISA), (4) Indian Society for Probability \& Statistics (ISPS), (5) Forum for Interdisciplinary Mathematics (FIM), (6) Electronics Scientists \& Engineers Society (ESES) and (7) International Association of Engineers (IAENG). Moreover, he is a Reviewer/Referee of (1) Journal of Assam Science Society (JASS) \& (2) Biometrics \& Biostatistics International Journal (BBIJ); a member of the executive committee of Electronic Scientists and Engineers Society (ESES); and a Member of the Editorial Board of (1) Journal of Environmental Science, Computer Science and Engineering \& Technology (JECET), (2) Journal of Mathematics and System Science (JMSS) \& (3) Partners Universal International Research Journal (PUIRJ). Dr. Chakrabarty acted as members (at various capacities) of the organizing committees of a number of conferences/seminars already held.
Dr. Chakrabarty was awarded with the prestigious SAS Eminent Fellow Membership (SEFM) with membership ID No. SAS/SEFM/132/2022 by Scholars Academic and Scientific Society (SAS Society) on March 27, 2022.

