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ABSTRACT: Cryptanalysis is the field of science that determines the secret key or level of stability of a cryptographic 

algorithm. Currently, there are several methods for cryptanalysis of modern cryptographic algorithms. At the same time, 

deep learning-based cryptanalysis is being actively researched following the development of machine learning 

technologies. Today, cryptanalysis techniques such as plaintext attacks on light block ciphers are known. In this paper, 

we consider a deep learning method for key classification in machine learning techniques using a separate model for each 

key byte. We use this method to predict the key of the light block S-AES algorithm. And we propose a method based on 

machine learning techniques based on each byte of the key. The accuracy of machine learning using this method has been 

observed to vary by different values depending on the data set and the parameters included in it. 
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I.INTRODUCTION 
 

The increasingly important field of cryptanalysis has its place in cryptology, which is crucial for evaluating the strength 

and effectiveness of encryption methods in an environment of increasing demand for secure communications and privacy. 

Traditional cryptanalysis, based on mathematical and statistical methods, is used to find flaws in cryptographic 

algorithms[1]. Advances in artificial intelligence technologies have led to deep learning-based techniques that provide 

new methods for cryptanalysis of encrypted data. The goal of cryptanalysis is to decrypt encrypted data without a 

decryption key, which reveals the weaknesses of cryptographic systems[2], [3]. The incorporation of deep learning into 

cryptanalysis has led to promising advances in attack strategies, increasing the accuracy and speed of breaking encrypted 

information. Research in this area focuses on the use of neural networks for known plaintext attacks on various encryption 

algorithms, where the attacker knows parts of the plaintext and the corresponding ciphertext, and attempts to discover 

the secret key to decrypt the remaining ciphertext [4], [5]. Research in this area also includes side-channel attacks, which 

exploit unintentional information leaks during the encryption process, such as power consumption or time differences[6]. 

The use of deep learning models has shown the potential for effective side-channel attacks against complex encryption 

algorithms, highlighting the importance of strong security measures to protect against these vulnerabilities [7]. Research 

is also being carried out into the classification and identification of encryption algorithms using neural networks. Training 

models on ciphertext from different algorithms has led to high accuracy in identifying the encryption techniques used 

[8], [9]. This ability helps you understand the strengths and weaknesses of different encryption methods and identify 

potential vulnerabilities. As deep learning develops in many fields, its role in cryptanalysis opens up new opportunities 

and challenges[10]. The results of these studies highlight the impact of deep learning models on the development of 

cryptanalysis, raising questions about the future of cryptographic security and the need for stronger encryption solutions. 

The convergence of deep learning and cryptanalysis marks a dynamic, evolving frontier with significant implications for 

the future of encryption and data security.  

 

II. MACHINE LEARNING CLASSIFIERS 
 

A) Random Forest Algorithm 

Given a training dataset 
1 1 2 2{( , ), ( , ),..., ( , )}N ND x y x y x y= , where ix  denotes the i th feature vector and iy  is the 

associated target value or class label: 

1. For t=1 to T:  

Generate a random training subset TD  by applying bootstrapping to D . 

Randomly select a subset of features TF  for each split. 
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Construct a decision tree tT   using TD  and TF  by recursively optimizing node splits based on impurity reduction 

criteria (e.g., Gini impurity or mean squared error). 

2. For a given input feature vector x : 

Compute predictions from each tree: 
1 2
( ), ( ),..., ( ).

Ttree tree treey x y x y x  

For classification tasks, predict the class label by determining the mode of the predictions (1):  

1 2
ˆ { ( ), ( ),..., ( )}

Ttree tree treemody y x y x y xe=                                                    (1) 

For regression tasks, predict the target value by calculating the average (2):  

1

1
ˆ ( )

T

treei
y y x

T =
=                                                                               (2)                       

The Random Forest algorithm amalgamates the individual outputs of multiple decision trees to yield a more robust and 

accurate prediction. The incorporation of random data subsampling and feature selection, coupled with ensemble 

averaging, contributes to the control of overfitting and enhancement of generalization ability. Furthermore, the utilization 

of out-of-bag samples can facilitate internal validation during the training phase[11]. 

The ensemble nature of Random Forest renders it well-suited for diverse domains encompassing classification and 

regression tasks. It excels in addressing intricate data relationships while concurrently mitigating the perils of overfitting. 

Notably, the algorithm's efficacy can be influenced by adjustable parameters such as the number of trees T  and the depth 

of each individual tree. 

 

B) k Nearest Neighbours 

 

Given a training dataset 1 1 2 2{( , ), ( , ),..., ( , )}N ND x y x y x y= , where ix  represents the i th feature vector and iy

is the corresponding target value or class label: 

1. For a given input feature vector x : 

Calculate the distance between x  and all ix in the training dataset using a chosen distance metric (e.g., Euclidean 

distance). 

Select the k nearest neighbors based on the calculated distances. 

2. For classification tasks: 

• Determine the class labels of the k  nearest neighbors. 

• Predict the class label for x  using majority voting among the class labels of the k  neighbors. 

3. For regression tasks: 

Retrieve the target values of the k  nearest neighbors. 

Predict the target value for x  by calculating the average (or weighted average) of the k neighbors' target values. 

The KNN algorithm assigns predictions based on the majority class among the k nearest neighbors for classification, or 

the average of their target values for regression. It relies on the assumption that similar data points tend to have similar 

outcomes. The choice of k  affects the trade-off between bias and variance: smaller k values increase variance and 

reduce bias, while larger k  values have the opposite effect. 

KNN is known for its simplicity and ability to capture complex relationships in data. However, it can be sensitive to the 

choice of distance metric and the curse of dimensionality when applied to high-dimensional spaces. Parameter tuning, 

distance metric selection, and data normalization are essential considerations when employing KNN. 

In summary, the KNN algorithm exemplifies the essence of local pattern recognition and can be adapted to various 

applications across classification and regression tasks. Its strength lies in its intuitive nature and adaptability, although 

thoughtful parameter choices are crucial for achieving optimal results [12] . 

 

 

C) Support Vector Machine (SVM) Algorithm 

Given a training dataset 
1 1 2 2{( , ), ( , ),..., ( , )}N ND x y x y x y= , where ix  denotes the i th feature vector and iy  is the 

associated class label ( { 1, 1})iy  − + : 
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Optimal Hyperplane Search: 

• Find the hyperplane with the largest margin that separates the classes. 

• The optimal hyperplane is determined by maximizing the margin while minimizing classification error. 

Support Vectors: 

• Identify the data points, referred to as support vectors, that lie closest to the optimal hyperplane. 

• These support vectors play a pivotal role in defining the hyperplane and influencing the classification decision. 

Classification: 

• For a new input feature vector x , determine the side of the hyperplane it lies on. 

• Predict the class label ( )1  1or− + based on which side of the hyperplane x  falls. 

Mathematically, the optimal hyperplane is represented as: 0w x b + =   

where w is the weight vector perpendicular to the hyperplane, x is the input feature vector, and b is the bias term. 

The classification decision is made based on the sign of the discriminant function (3): 

 

( ) ( )f x sign w x b=  +                                                                (3) 

 

where sign  returns −1 or +1 depending on whether the argument is negative or positive. 

SVM aims to find the optimal hyperplane by solving the following optimization problem (4): 

2

,

1
min

2
w b w                                                                     (4) 

subject to ( ) 1i iy w x b +  for all 1,2,..., .i N=  

SVM can also be extended for non-linearly separable data using the kernel trick, where data is mapped to a higher-

dimensional space to make it linearly separable. 

In summary, the SVM algorithm seeks to find the optimal hyperplane that maximizes the margin between classes while 

considering support vectors. It offers a powerful framework for binary classification, even in complex scenarios, and its 

effectiveness is attributed to its ability to handle high-dimensional data and nonlinear relationships [13]. 

 

III. SIMPLIFIED AES ALGORITHM 

 

Simplified AES (S-AES) is a variant of the Advanced Encryption Standard (AES) algorithm developed by Professor 

Edward Schaefer of Santa Clara University, primarily as an educational tool. It is designed to help students understand 

the complex structure of AES by using smaller cipher block sizes and key lengths. S-AES uses a uniform block size of 

16 bits for both plaintext and ciphertext, accompanied by a uniform key size of 16 bits. In the encryption process, S-AES 

generates a 16-bit ciphertext from a 16-bit plaintext and a 16-bit key. Similarly, in decryption, it converts a 16-bit 

ciphertext back into a 16-bit plaintext using the identical 16-bit key. This process is illustrated in Figure 1. 

S-AES is an encryption method designed to work with 16-bit data blocks. It performs both encryption and decryption 

using a single swap step and a simplified process with only two rounds. The key used for encryption is set to 16 bits. The 

structures of the encryption and decryption processes are similar, but the subkeys are used in reverse order in the 

encryption steps. An encryption operation takes a 16-bit plaintext and a 16-bit key, resulting in a 16-bit ciphertext. On 

the other hand, the decryption process, often called reverse encryption, works with the 16-bit ciphertext and the same 16-

bit key, resulting in the original 16-bit plaintext. Figure 2 presents the comprehensive structure of the encryption 

algorithm. In the domain of S-AES, the auxiliary keys K0, K1, and K2 are generated through the key expansion process, 

playing a crucial role in the encryption rounds. These auxiliary keys always have a 16-bit size, matching the dimensions 

of the plaintext or ciphertext block. During the encryption phase, the plaintext seamlessly integrates with these auxiliary 

keys through a series of substitution and shuffling steps, culminating in the ciphertext. Similarly, the decryption process 

inversely combines the ciphertext with the auxiliary keys, reconstructing the original plaintext [14]. 
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Although S-AES strictly adheres to smaller block and key sizes, making it less formidable compared to AES, it stands 

out as an invaluable teaching resource. It sheds light on the fundamental architecture and principles of AES, thereby 

aiding in a deeper understanding of cryptographic concepts. 

 

 
 

The S-AES encryption procedure meticulously adheres to a series of steps encompassing four key elements: Nibble 

Substitution, Row Shifting, Column Mixing, and Key Addition. These elements are skillfully executed across two rounds, 

with the Column Mixing step being excluded in the final round. An extra Key Addition phase is incorporated at the 

beginning, before the first round commences. Figure 3 provides a graphical depiction of the complete S-AES encryption 

and decryption process, encapsulated within a diagram or flowchart. This graphical illustration clearly portrays the unique 

role and orderly progression of each component in the sequence. 

 

The opposite action to encryption, commonly referred to as decryption, is performed expertly to recover the original 

plaintext. Decryption acts as a counterbalance to encryption, using the same key but in reverse. This inversion involves 

reversing the series of steps taken in the encryption phase. The act of decryption successfully unravels the intertwined 

effects of encryption, thus providing a counter mechanism to the encryption process. Examples of S-AES encryption and 

decryption processes are thoughtfully presented in Table 1. 

 

 
Figure 1: Encryption and decryption process of S-AES 

 

 
Figure 2: General design of S-AES encryption cipher 
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Table 1: S-AES encryption values obtained using a randomly selected plaintext and key 

№ Plaintext Key Ciphertext 

1 0111011101110111 0011011001111001 0100000010011000 

2 1110100110110100 0100000111111011 1011111110100110 

3 1110100000000000 0011010100011010 1010100110100110 

4 0110100010111001 0010010111110110 0101111111110101 

5 0100100010111001 0001000111110100 1011000110011011 

 

IV. METHODOLOGY 

 

In this paper, we present an approach to extract key information of S-AES based on machine learning. For this we chose 

the KNN, Random Forest and SVM methods. Plaintext and ciphertext pairs are taken as input and each key bit is taken 

as a target bit. Data set selected: 70% for training and 30% for testing. To discover the keys, the dataset size was changed 

and these algorithms were trained with different sizes. At each stage of the process, the same parameters were used for 

each machine learning method. Figure 4 shows the scheme for generating the S-AES dataset by random selection. The 

process begins by randomly selecting plaintext and a key, which is then used to generate ciphertext using the S-AES 

encryption algorithm. In this case, the key in the algorithm is designated as K.  

 

 

  
Figure 3: The S-AES Encryption and decryption process 

 

  
Figure 4: Diagram of S-AES dataset generation by random sampling 
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V. EXPERIMENTAL RESULTS 

 

This article provides details on the S-AES key classification method, using the Python programming language and the 

Scikit-Learn library. Calculations were performed on an Intel i5 microprocessor computer with 24 GB of RAM and an 

NVIDIA RTX 3050 video card. During the execution of the attack, various training methods and parameters were used. 

These parameters were used sequentially in the classification process of all keys. Three different classification methods 

- K-NN (K-Nearest Neighbors), Random Forest and SVM (Support Vector Machine) were selected for this experiment. 

Each method was tested with different sizes of data sets. The results of the experiment are presented in Tables 2-6.  

 

Table2. Key bits classification accuracy when the number of k neighbours is 2 in the k-NN method 

Sample 
Accuracy 

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 

500 0,473 0,500 0,553 0,487 0,487 0,487 0,487 0,513 0,460 0,527 0,520 0,527 0,460 0,553 0,480 0,453 

1000 0,503 0,453 0,523 0,457 0,503 0,510 0,443 0,503 0,483 0,493 0,533 0,477 0,483 0,497 0,560 0,513 

5000 0,515 0,507 0,498 0,497 0,511 0,492 0,522 0,488 0,477 0,489 0,513 0,494 0,506 0,486 0,497 0,498 

10000 0,509 0,509 0,492 0,504 0,501 0,494 0,495 0,494 0,484 0,512 0,512 0,509 0,503 0,487 0,493 0,490 

20000 0,496 0,505 0,493 0,497 0,496 0,504 0,504 0,510 0,501 0,504 0,498 0,490 0,496 0,495 0,504 0,508 

 

Table3. Key bits classification accuracy when an estimator is 100 in the Random Forest method 

Sample 
Accuracy 

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 

500 0,520 0,493 0,493 0,547 0,480 0,513 0,547 0,467 0,533 0,500 0,500 0,460 0,413 0,520 0,533 0,493 

1000 0,437 0,443 0,517 0,463 0,503 0,487 0,540 0,540 0,500 0,507 0,517 0,563 0,457 0,490 0,540 0,547 

5000 0,510 0,506 0,501 0,483 0,496 0,486 0,513 0,516 0,506 0,497 0,508 0,505 0,499 0,494 0,483 0,492 

10000 0,506 0,516 0,505 0,501 0,512 0,501 0,505 0,495 0,495 0,496 0,515 0,503 0,509 0,490 0,494 0,508 

20000 0,508 0,498 0,512 0,513 0,501 0,499 0,500 0,489 0,496 0,497 0,502 0,484 0,500 0,513 0,493 0,508 

 

 

 

 

 

  
Figure 5: Diagram of the use of machine learning techniques in S-AES key classification 
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Table4. Key bits classification accuracy when Kernel is linear in SVM method 

Sample 
Accuracy 

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 

500 0,490 0,550 0,510 0,600 0,560 0,450 0,480 0,540 0,430 0,580 0,570 0,530 0,360 0,460 0,520 0,530 

1000 0,525 0,530 0,495 0,510 0,480 0,575 0,495 0,495 0,445 0,540 0,485 0,485 0,480 0,465 0,520 0,465 

5000 0,533 0,492 0,493 0,513 0,498 0,503 0,502 0,481 0,512 0,518 0,496 0,508 0,524 0,500 0,520 0,477 

10000 0,511 0,507 0,504 0,479 0,525 0,512 0,497 0,500 0,474 0,499 0,504 0,492 0,520 0,500 0,523 0,482 

20000 0,521 0,494 0,505 0,492 0,503 0,503 0,505 0,496 0,490 0,506 0,493 0,495 0,496 0,507 0,506 0,506 

 

 

Table4. Key bits classification accuracy in SVM method when Kernel RBF and gamma = 0.1 

Sample 
Accuracy 

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 

500 0,513 0,487 0,473 0,533 0,487 0,480 0,533 0,473 0,560 0,507 0,547 0,480 0,400 0,567 0,473 0,480 

1000 0,447 0,433 0,527 0,507 0,450 0,510 0,513 0,460 0,497 0,523 0,483 0,587 0,487 0,463 0,507 0,520 

5000 0,497 0,504 0,495 0,491 0,509 0,486 0,491 0,516 0,504 0,503 0,517 0,501 0,494 0,513 0,512 0,487 

10000 0,506 0,514 0,507 0,504 0,496 0,507 0,510 0,493 0,485 0,497 0,511 0,500 0,506 0,505 0,508 0,498 

20000 0,496 0,506 0,508 0,500 0,508 0,487 0,491 0,489 0,502 0,498 0,490 0,485 0,499 0,504 0,511 0,504 

 

Table5. Key bits classification accuracy when Kernel Polynomial degree=4 in SVM method 

Sample 
Accuracy 

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 

500 0,500 0,540 0,493 0,520 0,433 0,487 0,487 0,500 0,573 0,533 0,473 0,527 0,413 0,580 0,467 0,487 

1000 0,430 0,437 0,520 0,530 0,473 0,510 0,500 0,467 0,527 0,523 0,507 0,550 0,457 0,500 0,500 0,503 

5000 0,511 0,503 0,482 0,499 0,527 0,503 0,493 0,502 0,480 0,497 0,515 0,503 0,513 0,511 0,495 0,487 

10000 0,492 0,504 0,490 0,515 0,509 0,507 0,503 0,492 0,473 0,504 0,512 0,489 0,510 0,497 0,503 0,495 

20000 0,493 0,497 0,496 0,505 0,497 0,503 0,503 0,500 0,498 0,505 0,502 0,492 0,494 0,501 0,501 0,504 

 

Table6. Key bits classification accuracy when Kernel is sigmoid in SVM method 

Sample 
Accuracy 

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 

500 0,533 0,513 0,507 0,520 0,500 0,513 0,520 0,520 0,560 0,467 0,493 0,507 0,447 0,520 0,487 0,480 

1000 0,533 0,507 0,510 0,513 0,523 0,490 0,513 0,490 0,513 0,507 0,517 0,540 0,513 0,483 0,523 0,487 

5000 0,499 0,509 0,507 0,474 0,500 0,501 0,505 0,511 0,490 0,497 0,494 0,472 0,491 0,486 0,505 0,479 

10000 0,510 0,513 0,502 0,491 0,494 0,516 0,512 0,509 0,492 0,514 0,510 0,511 0,495 0,499 0,510 0,497 

20000 0,492 0,505 0,500 0,495 0,495 0,507 0,503 0,498 0,495 0,506 0,508 0,505 0,500 0,500 0,489 0,500 

 

VI. CONCLUSION AND FUTURE WORK 

 

The paper discusses the use of machine learning techniques for classifying keys in the Simplified Advanced Encryption 

Standard (S-AES) algorithm. Three different classification methods were tested with varying parameters. The study 

revealed that when using a Support Vector Machine (SVM) with 500 data sets, the prediction accuracy varied for different 

keys: 0.60 for k3, 0.58 for k9, and 0.57 for k10. This indicates that different parameters yield different classification 

accuracies for each key. A notable observation from the study is that the accuracy of machine learning methods tends to 

decrease as the size of the data sets increases. Despite this, the authors suggest that future work could improve key 

classification by optimizing machine learning hyperparameters. They also emphasize the importance of having adequate 

training and testing data, as well as sufficient computing power, to achieve better results in key classification using 

machine learning techniques. 
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