

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21678

Decoupling Design Patterns
Iskandarov I.Z , Gulomov A.R.

Urgench branch of Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi

Urgench branch of Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi

ABSTRACT: The article discusses decoupling patterns that are used as the basis for creating ORM (Object Relational

Mapper) technology. Three decoupling patterns are considered: description, the problem that the pattern solves, the

advantages and disadvantages of each pattern. Comparative characteristics and SWOT analysis are also shown.

KEY WORDS: design patterns, ORM, database

I. INTRODUCTION

Design pattern - an architectural solution to a task or problem that arises when designing software. Design patterns make

it easier to reuse successful designs and architectures. Expressing proven techniques as design patterns makes them more

accessible to developers of new systems [1]. Design patterns have a number of advantages: scalability, they are time-

tested and experienced by software architects and developers, reduction in design time due to the use of ready-made

“templates”. Design patterns also form an informal standard and terms (names) for solving known problems. This makes

it easier to analyze and study the system if you indicate the name of the pattern used in the design of a particular part of

the system. The relevance of database design patterns is determined by the fact that in most cases the system needs to

store and process data and thereby use the database. Database design patterns allow you to simplify working with

databases, build abstractions between application layers, and define the application architecture when working with data.

Typically, a design pattern description consists of the following parts:

1. Name – defines the meaning of the pattern and the standard name for further use. The names form a dictionary of

patterns.

2. Description of the problem - indicates the problem or case in which the problem occurs and also defines the statement

of the problem.

3. Solution – indicates an architectural solution to a problem, usually using diagrams.

4. Result – shows the advantages, disadvantages, limitations of using the design pattern.

II. LITERATURE ANALYSIS AND METHODOLOGY

One of the fundamental literature on this theme is the book “Patterns of Enterprise Application Architecture” by Martin

Fowler [2]. The book covers the theme in the context of using patterns to create enterprise applications. This literature

discusses the theme of the object model and relational databases, various problems of interaction of an application with

databases, object-based data mapping (use of OOP), and creating layers between the application and the database. Several

database patterns are presented, such as: Active Record, Data Mapper, Gateway, Identity Map and others.

Some literature approaches the theme based on specific programming languages. For example, in [3], in the chapter

Database Patterns, there are given some patterns with a description, implementation in the programming language PHP

and the consequences of using the pattern. The theme is discussed in detail in [4] given such patterns as: Data Accessor

(Data Access Object), Active Domain Object (Active Record), Object/Relational Map and others. For each pattern, an

implementation in the Java programming language is provided. Data caching patterns are also discussed.

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21679

A.Object model and relational mapping

Let us look at interacting with data in an application (data layer) in the context of the OOP paradigm and relational

databases. Let's define an object model as a model in which database entities will represent classes (models) and entity

data will represent objects. In the case of a relational database, one object will represent one record in the table, and the

object’s properties store the values of the record’s attributes. This model can be called object-relational. Table 1 shows

the relationship between the elements of the relational database and the object-relational model.

Table 1. Corresponding elements of the relational data model and the object-relational model

Relational data model Informal name Object-relational model

Relation Table Class (Model)

Tuple Record, Row Object

Attribute Column Property (of an object)

Selection1 Result table Collection

 Figure 1 shows an example of representing a table through a class.

Fig. 1. Representing a database table through a class

Object-relational mapping (ORM) technology is built on the basis of this model. The task of ORM is to ensure work

with the database in the application using OOP. Queries to the database are carried out through methods and work with

data is carried out through objects. Thus, ORM creates an abstraction and encapsulates working with data and

executing queries to the database.

Figure 2 shows the interaction diagram of ORM with the database

1 This is a relational algebra operation that consists of selecting data

Customer

PK Customer_ID

 Name
 Middle_name
 Surname
 Birthdate
 Passport
 Address
 Phone

-Customer_ID : long
-Name : string
-Middle_name : string
-Surname : string
-Birthdate : string
-Passport : string
-Address : string
-Phone : string

Customer

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21680

Fig. 2. Interaction between the model and the database

B.Classification of Database Patterns

Based on the problems that the pattern solves and the level of abstraction, database patterns can be divided into categories.

In this article, we will define and consider some of them.

One of the main architectural problems when an application interacts with databases is to separate a part that works with

data from other parts of the application, that is, create a data layer and also provide a way for this layer to interact with

the business logic of the application. The most popular scheme is to divide the application into 3 layers: presentation,

business logic, data layer (Figure 3).

Fig 3. Dividing the application into layers

To solve this problem, we define a category of decoupling patterns. Decoupling patterns define how application code

relates to its data model and data access code. As you decide on an application architecture, you need to consider how

much cohesion you want between orthogonal components based on how much you expect them to vary independently.

Decoupling components also makes it easier to build and maintain them concurrently [4]. Examples of decoupling

patterns include the following patterns: Active Record, Data Access Object, etc.

The next category of patterns is behavioral patterns. Behavioral patterns address issues of object state, identification,

and loading. This category includes such patterns as: Unit of Work, Identity Map, etc. Data modeling patterns prescribe

the structure and method of organizing data for different contexts. This category focuses on solving architectural problems

at the database level. This category of patterns includes: EAV, Hierarchy Pattern, etc. Also, other categories are indicated

in different sources. For example, in [2] are given object-relational mapping patterns (Metadata Mapping, Query Object),

object-relational structural patterns (Identity Field, Foreign Key Mapping) in [4] resource patterns (Resource Decorator,

Resource Pool). Figure 4 shows a classification diagram based on the three patterns described above.

-Customer_ID : long
-Name : string
-Middle_name : string
-Surname : string
-Birthdate : string
-Passport : string
-Address : string
-Phone : string

Customer

ORM Database

Presentation
responsible for the
appearance of the

application

Business Logic
responsible for

application logic

Data
responsible for

working with data

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21681

Fig 4. Incomplete classification of database patterns

C.Decoupling patterns

Active Record. In this pattern, an object represents the data of a single row of a database table as in the object model,

encapsulates access to the database and also includes business logic. Business logic is included as object methods. Figure

5 shows an example of the Active Record pattern model.

Fig 5. Model of the Active Record pattern

Problem. As noted above, if there is a need to use a database in an application, the most correct thing is to create a layer

for working with data so that other parts of the application do not interact directly with the data (this increases the

complexity of the application and the connectivity between components) and also add the ability to define business logic

in the process interaction with this layer.

Solution. The Active Record pattern solves this problem by using an object model and incorporating business logic into

the object. Based on this, the following are usually included in the Active Record:

• fields corresponding to the table schema, access and modification methods (getters/setters) for them.

• various data transformation methods (mutators).

• methods for inserting, deleting, and updating data.

• data retrieval methods.

• business logic operations associated with this model.

It should be noted that Active Record usually interacts with the interface of a physical database adapter that will execute

SQL queries to the database.

Purpose. Active Record is a good choice for business logic that isn’t too complex, such as creates, reads, updates, and

deletes. Derivations and validations based on a single record work well in this structure. Active Record is used by many

ORMs and can be said to be an implementation of ORM.

Results. Using this pattern gives the following results:

Database Patterns

Decoupling Patterns

 Active Record
 Data Access Object

 Table Data Gateway

...

Behavioral Patterns

 Unit of Work
 Identity Map

 Lazy Load

...

Data Modeling Patterns

 EAV
 Hierarchy Pattern

 Network pattern

...

+insert()
+update()
+delete()
+getPayments()
+getOrders()

-ID : long
-Name : string
-Surname : string
-Phone : string

Customer

Database

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21682

Benefits

• Easy to add business logic.

• Simplifies working with data. Creates an abstraction for working with data other parts of the application do not need

to know implementation details and can access models.

• Groups related data access code into a single component.

Drawbacks

• Violates the Single Responsibility Principle (SRP). The model will contain both business logic and data processing.

• Active Record is following the Database-First approach. You create a database and then model it in the code. It means

that entities do not contain logic.

• When changing the way data is stored, problems with code refactoring may arise.

Data Access Object. An object that encapsulates and abstracts access to data from a persistent store or an external system.

The Data Access Object or DAO pattern is used to separate low level data accessing operations from the application or

business logic layer. Usually it uses relational databases as the data source, but may use other storage mechanisms and

source types.

Problem. We can access source APIs directly to work with data, but this creates a strict dependency on that source or

storage mechanism. That is, when changing the source, you will have to make changes to the code base in those places

where access to the API is used. Using the Active Record example, it was indicated that it interacts with the interface of

a physical database adapter that will execute SQL queries to the database.

Solution. Use a Data Access Object (DAO) to abstract and encapsulate all access to the data source. The DAO manages

the connection with the data source to obtain and store data. The DAO provides an interface that ensures the necessary

methods for working with a data source. Since the interface does not change, we can change the source quite easily. The

DAO creates an abstraction for working with a data source and hides the implementation details. The data source can be

relational DBMS, external data storage, files, etc. Following are the participants in Data Access Object Pattern:

• DAO interface - This interface defines the standard operations to be performed on a model object(s).

• DAO concrete class - This class implements above interface. This class is responsible to get data from a data source

which can be database / xml or any other storage mechanism.

• Transfer object – This object contains data retrieved from source which are stored in object fields and access

methods for this fields (getters/setters). The Data Access Object may use a Transfer Object to return data to the

client.

• DataSource - This represents a data source implementation. A data source could be a database such as an RDBMS,

OODBMS, XML repository, flat file system, and so forth.

• BusinessObject - The BusinessObject represents the data client. It is the object that requires access to the data source

to obtain and store data.

Figure 6 shows the class diagram representing the relationships for the DAO pattern.

Fig. 6. The Data Access Object structure diagram

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21683

Figure 7 shows an example of the DAO class diagram.

Fig. 7. Example of the DAO

Results. Using this pattern gives the following results:

Benefits

• Enables Transparency. Business objects can use the data source without knowing the specific details of the data

source’s implementation. Access is transparent because the implementation details are hidden inside the DAO.

• Enables Easier Migration. A layer of DAOs makes it easier for an application to migrate to a different database

implementation.

• Reduces Code Complexity in Business Objects. Because the DAOs manage all the data access complexities, it

simplifies the code in the business objects and other data clients that use the DAOs.

Drawbacks

• Adds Extra Layer. The DAOs create an additional layer of objects between the data client and the data source that

need to be designed and implemented to leverage the benefits of this pattern. But the benefit realized by choosing this

approach pays off for the additional effort.

• Needs Class Hierarchy Design. When using a factory strategy, the hierarchy of concrete factories and the hierarchy

of concrete products produced by the factories need to be designed and implemented.

Data Mapper. A Data Mapper is a pattern that performs bidirectional transfer of data between a persistent data store

(often a relational database) and an in-memory data representation.

Problem. The data we receive from a data source (usually a relational database) can be in different formats. Relational

databases store data in the form of tables that consist of rows and columns. The format may differ for other storage

systems. As with the object model, we need to map this data as an object and push changes back to the database if

necessary. In addition, we may only need part of the data or a different storage structure.

Solution. The approach to solving this pattern is similar to the Data Access Object pattern. In practice, these two patterns

provide a similar solution. A layer for working with data is created and a data transfer object is used/generated. But the

Data Mapper pattern pays special attention to displaying data in an object and uses an additional EntityManager class.

<<interface>>
StudentDAOInterface

+getAll(): Collection<StudentDTO>
+getStudentByID(id: int): StudentDTO
+save(student: StudentDTO)
+delete(student: StudentDTO)

StudentDAO

+getAll(): Collection<StudentDTO>
+getStudentByID(id: int): StudentDTO
+save(student: StudentDTO)
+delete(student: StudentDTO)

+getId() : int
+getName() : string
+setName()
+getPhone() : string
+setPhone()

-id : int
-name : string
-phone : string
-address : string

StudentDTO

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21684

Figure 8 shows the class diagram of the DataMapper pattern.

Fig. 8. The DataMapper structure diagram

Results. Using this pattern gives the following results:

Benefits

• Allows flexible customization of the creation of data objects that can come from different sources and in different

formats.

• Separates the business logic of the application and the data layer. Separates other parts of the application from working

with data and creates a single area of responsibility in the data layer.

• Good testability. The Data Mapper pattern promotes testability by decoupling the domain objects from the database.

Since the domain objects are not tightly coupled to the database operations, you can easily write unit tests for the

business logic without the need for an actual database connection.

Drawbacks

• Increased complexity. The Data Mapper adds an extra layer of abstraction, which can make the overall architecture

more complex and harder to understand.

• Performance overhead. The data mapper must translate between the domain and the persistence layer, adding a

performance overhead.

III. RESULTS AND DISCUSSION

Table 2 provides a comparison of the three patterns above. Numerical characteristics are given on a scale from 0 to 5.

<<interface>>
MapperInterface

+getAll(): Collection<EntityDTO>
+getEntityByID(id: int): EntityDTO
+save(entity: EntityDTO)
+delete(entity: EntityDTO)

ConcreteMapper

+getAll(): Collection<EntityDTO>
+getEntityByID(id: int): EntityDTO
+save(entity: EntityDTO)
+delete(entity: EntityDTO)

+getAttribute1()
+setAttribute1()
+getAttribute2()
+setAttribute2()

-attribute1
-attribute2

EntityDTO

EntityManager

+create(dataRow): EntityDTO

<<interface>>
PhysicalDatabaseAdapter

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21685

Table 2. Comparison table of the three patterns

Pattern

name
Antipattern

Which ORMs use

the pattern

Popularity

(0-5)

Complexity

(0-5)
Related patterns

Flexibility

(0-5)

Testability

(0-5)

Active

Record

Yes Laravel, Yii2,

Django,

ActiveJDBC
5 2

Data Accessor,

Object/Relational

Map, Selection

Factory

3 3

Data

Access

Object

No Persist, Entity

Framework,

Hibernate
3 3

DTO, Singleton,

Abstract Factory,

Command, Table

Data Gateway

5 4

Data

Mapper

No Doctrine2,

SQLAlchemy,

Cycle ORM,

Hibernate

4 4

DTO, Domain

Object

Assembler, Table

Data Gateway

5 5

Figure 9 shows a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of the Active Record pattern.

Fig. 9. SWOT analysis the Active Record

Figure 10 shows a SWOT analysis of the Data Access Object pattern.

Fig. 10. SWOT analysis the Data Access Object

Easy to add
business logic and

work with data

Low flexibility,
Bad testability

The emergence of
“fat” models,

Hard business logic

Use additional
patterns and

abstractions to
improve

Weaknesses

Opportunities Threats

Strengths

Enables easier
migration,

Enables
transparency

Adds extra layer,
Needs class

hierarchy design

Increase the
complexity of the

application

Development of
ready-made

implementations
for use

Weaknesses

Opportunities Threats

Strengths

http://www.ijarset.com/

ISSN: 2350-0328

International Journal of AdvancedResearch in Science,

Engineering and Technology

Vol. 11, Issue 4, April 2024

Copyright to IJARSET www.ijarset.com 21686

Figure 11 shows a SWOT analysis of the Data Access Object pattern.

Fig. 11. SWOT analysis the Data Access Object

IV. CONCLUSION

The patterns considered are used by most ORMs and are the basis for their creation. However, decoupling patterns do

not solve all the problems that arise when creating an ORM. Thus, it is necessary to use additional patterns, architectural

solutions, algorithms, and models to build a full-fledged ORM. Which decoupling pattern to choose depends largely on

the tasks being solved and the scale of the application. The Active Record pattern is the most popular and easy to use,

and we can choose this pattern if the business logic of the application is not too complex. On the other hand, for large

applications, it is recommended to use the Data Access Object and Data Mapper patterns. However, they increase the

complexity of the application, thereby complicating development. In general, we can say that these patterns are almost

equivalent and perform similar tasks.

REFERENCES

1. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns: elements of reusable object-oriented software”, Addison-Wesley,

1995

2. Martin Fowler, David Rice, Matthew Foemmel, Edward Hieatt, Robert Mee, Randy Stafford, “Patterns of Enterprise Application Architecture”,
Addison-Wesley, November 05, 2002.

3. Matt Zandstra, “PHP Objects, Patterns, and Practice, Second Edition”, Apress, 2008.

4. Clifton Nock, “Data Access Patterns: Database Interactions in Object-Oriented Applications”, Addison-Wesley, September 15, 2003.

Flexible,
Good testability

Increased
complexity,

Performance
overhead

Increase the
complexity of the

application

Use an
implementation

option aimed at a
specific data model

Weaknesses

Opportunities Threats

Strengths

http://www.ijarset.com/

