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ABSTRACT: The estimation of electrical energy losses during the transmission and distribution of 

electricity is a challenging problem in power systems engineering. Traditional methods for loss calculation 

often rely on deterministic data and iterative steady-state analysis, incorporating several assumptions to 

approximate system behavior. However, these approaches may lack the accuracy and efficiency required for 

real-time applications. To address this issue, it is critical to employ advanced methodologies that can better 

capture the uncertainties inherent in operational data and provide faster computation times. This paper 

presents a set of models based on artificial neural networks (ANNs) for assessing electrical energy losses in 

distribution networks. The implementation of these models enhances the speed and precision of loss 

calculation, offering a more robust solution for operational management. The theoretical models are validated 

through application to actual 6-10 kV distribution network circuits.  

I.INTRODUCTION 

 
 The amount of electrical energy losses is a key indicator in assessing the operational efficiency and economic 

viability of electrical networks. The task of identifying and minimizing energy losses in these networks remains both 

urgent and economically significant [1]. 

Frequently, when calculating electrical energy losses, one encounters incomplete and unreliable data, such as 

electrical load profiles, energy consumption amounts, and the switching states of network components [1-5]. However, 

the advent of modern automated information and measurement systems has made it possible to mitigate these issues 

effectively. 

The calculation of electrical energy losses using automated information and measurement systems pertains to 

operational calculations and involves real-time assessment of energy losses [6]. Despite the availability of various 

methods for estimating energy losses, their application is often challenging. Traditional approaches to calculating energy 

efficiency losses rely on steady-state simulations based on network parameters and operating conditions. These 

calculations are complex, requiring high-dimensional data and significant computational time. 

Recent studies [7, 8] have shown that more accurate and efficient solutions can be obtained through the use of 

"intelligent" methods, particularly artificial neural networks (ANNs) [9]. Currently, ANNs are widely employed in 

various power system applications, including loss analysis [10, 11], steady-state calculations [12, 13], and the prediction 

of electrical load and energy losses [14, 15], among others. 

The key advantages of using ANNs in energy loss calculations include: 

The ability to model complex processes effectively. 

The potential to derive simplified models for practical applications. 

High reliability in obtaining results through the explicit modeling of the relationship between input and output 

parameters. 

Therefore, the primary aim of this paper is to conduct a comparative assessment of different types of ANNs for the 

rapid evaluation of electrical energy losses and to highlight their advantages over traditional methods. 
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II.METHODOLOGY FOR CALCULATING TECHNICAL LOSSES OF ELECTRICAL ENERGY 

To perform the required calculations based on the input data concerning the network topology and its components, 

an equivalent circuit is constructed, which is characterized by the resistances and conductances of the elements within 

the distribution network. When determining the active resistance of various sections of the network, it is essential to 

account for external factors, particularly the ambient temperature (𝑡), as it significantly affects the electrical properties of 

the network components: 

𝑅𝑖 = 𝑅𝑖,20[1 + 𝛼(𝑡 − 20°)]                                       (1) 

Technical losses of electrical energy in distribution networks are made up of load losses in the lines and windings of 

transformers, and losses in steel of transformers: 

∆𝑊6−9 = (∆𝑊𝑙.𝑙𝑖𝑛𝑒 + ∆𝑊𝑙.𝑡𝑟) + ∆𝑊𝑠𝑡.𝑡𝑟           (2) 

Depending on the available input data and the results of steady-state calculations, the determination of load losses in 

distribution networks can be performed using various methods: 1) operational calculations, 2) settlement days, 3) average 

loads, and 4) maximum losses [1, 16]. Among these, the average loads method is widely used in open distribution 

networks operating at 110 kV and below [16], and it serves as the basis for performing the loss calculations. 

The average load at network nodes is determined based on the load factors of the transformers and the power factor 

of the primary node. Once these values are established, the network mode is calculated using an iterative method, which 

consists of two stages in each iteration. 

In the first stage, initial voltage approximations (equal to the nominal voltage of the network) are assigned to all nodes 

of the electrical network. From there, the power losses, as well as the losses at the beginning and end of each network 

section, are calculated. This process continues iteratively until the total power is determined at the initial point of the 

network.In the second stage, the node voltages are refined sequentially from the beginning to the end of the network [17, 

18]. 

Based on the results of this iterative process, the active and reactive power losses in the network are determined, 

considering the average loads over the calculated time interval: 

∆𝑃𝑚𝑖𝑑 =
𝑃𝑚𝑖𝑑,𝑖

2 +𝑄𝑚𝑖𝑑,𝑖
2

𝑈𝑖
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𝑃𝑚𝑖𝑑
2

𝑈𝑖
2∙𝑐𝑜𝑠𝜑2 ∙ 𝑅𝑖                                (3) 

∆𝑄𝑚𝑖𝑑 =
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In addition to power losses, the power of the head node (𝑃𝑏𝑎𝑠𝑒 , 𝑄𝑏𝑎𝑠𝑒) and the electricity supply (𝑊𝑏𝑎𝑠𝑒) are also 

determined. 

Next, the load losses in the lines and windings of the transformers are determined: 

∆𝑊𝑙 = 𝑘𝑙 ∙ 𝑘𝑘 ∙ ∆𝑃𝑚𝑖𝑑 ∙ 𝑇 ∙ 𝑘𝑓
2

                                                          (5) 

where 𝑘𝑙 is a coefficient that accounts for the impact of losses in overhead line fittings, and is set to 1.02 for lines 

with a voltage of 110 kV and above, and 1.0 for lower voltage lines; 𝑘𝑘 is a coefficient that compensates for the difference 

in the configurations of the active and reactive load curves of different network branches, and is assigned a value of 0.99; 

T - represents the calculation interval (typically in months); 𝑘𝑓
2 - is the square of the shape factor of the load curve. 

The square of the shape factor 𝑘𝑓
2 The square is determined based on the operational time at the maximum load 𝑇𝑚𝑎𝑥  

as follows:  

𝑘𝑓
2 = (

1090

𝑇𝑚𝑎𝑥
+ 0.876)

2

                                                           (6) 

The losses in steel of transformers (autotransformer) are determined on the basis of the no-load power losses given in 

the passport data, according to the formula: 

∆𝑊st.tr = ∆𝑃𝑠𝑡 ∙ 𝑇 ∙ (
𝑈𝑖

𝑈𝑛𝑜𝑚,𝑖
)2

                                            (7) 

III.ESTIMATION OF TECHNICAL LOSSES OF ELECTRICAL ENERGY BASED ON ARTIFICIAL 

NEURAL NETWORKS 

To perform a comparative analysis of technical losses in electrical energy within distribution networks, two distinct 

types of Artificial Neural Networks (ANNs) are considered: the Fitting Neural Network (FNN) and the Cascade-Forward 

Neural Network (CFNN). 

http://www.ijarset.com/


    

 
ISSN: 2350-0328 

International Journal of AdvancedResearch in Science, 

Engineering and Technology 

Vol. 11, Issue 12, December 2024 

 

 

Copyright to IJARSET                                              www.ijarset.com                                                              22636 
 

 

 

 

 

Both of these ANN types are relatively simple feedforward networks, each consisting of a single hidden layer. In 

these architectures, information flows in a unidirectional manner—from the input layer, through the hidden layer, to the 

output layer—without the formation of feedback loops or recurrent connections. The Fitting Neural Network (FNN) 

represents the simplest form of a feedforward network, whereas the Cascade-Forward Neural Network (CFNN) 

introduces a distinctive feature: each subsequent layer is connected to all previous layers, differentiating it from the basic 

FNN structure. 

The ANN-based modeling process is structured as follows: 

1. Formation of Statistical Data for Modeling: This step involves the collection and preparation of relevant input 

data that will be used for training the ANN model. 

2. Data Division: The dataset is divided into three subsets—training, testing, and validation samples. This division 

ensures that the model is evaluated and trained on diverse data to improve its generalizability. 

3. Selection of Network Architecture and Parameters: In this step, the structure of the neural network is defined, 

including decisions regarding the number of layers, the number of neurons per layer, and the activation functions 

used in the network. 

4. Training the ANN: The neural network is trained using the prepared training dataset. During this process, the 

model parameters are optimized to minimize error and improve prediction accuracy. 

5. Model Evaluation: After training, the model is evaluated using the test and validation datasets. This step is critical 

to assess how well the trained model generalizes to unseen data. 

6. Formation of Check Sample Data: A separate checking dataset is prepared for final evaluation, ensuring that the 

model's performance is thoroughly tested against new, untrained data. 

7. Model Selection: Based on the performance of the model on the checking sample, the best-performing ANN 

model is selected for further use in estimating the technical losses of electrical energy. 

In this methodology, steps 3, 4, and 5 are executed for each of the two ANN types mentioned above. Upon completing 

the algorithm, the most suitable ANN model is identified, providing an accurate estimation of the technical losses in the 

electrical energy distribution network. 

IV.FORMATION OF STATISTICAL DATA AND THEIR BREAKDOWN INTO SAMPLES 

To perform the required calculations of electrical energy losses, a 9-node distribution network configuration with four 

6 kV voltage loads was selected (see Fig. 1), where the head node is designated as the one node. The time period for 

evaluating the electrical energy losses is one month, with a total duration of 𝑇𝑐𝑎𝑙.𝑝. = 744 hours. 

 
Fig. 1. Operational schema of the 6 kV distribution network 

In order to generate statistical data, based on the above methodology, 1000 calculations were performed, in a wide 

range of changes in the following parameters: 

• Outside temperature t = 20 ÷ 40 ℃; 

• Head node voltage U0 = 6 ÷ 6.3 kV; 

• Load factor of transformers kz = 0.1 ÷ 0.8; 

• Head unit power factor cosφ = 0.7 ÷ 0.9; 

• Operating time with maximum load Tmax = 2000 ÷ 7000; 

On the basis of the entered data and the results of calculations, a general sample was formed consisting of 1000 pairs 

of statistical data “inputs-outputs”. In this case, the input data are the voltage of the head node, electricity supply, outdoor 
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temperature, the square of the shape factor of the load graph and the power of the load nodes 

(𝑈1, 𝑊1, 𝑡, 𝑘𝑓
2, 𝑃6, 𝑄6, 𝑃7, 𝑄7, 𝑃8, 𝑄8, 𝑃9, 𝑄9), and the output data are the absolute values of electrical energy losses (∆𝑊6−9, 

thousand kW * h). 

The resulting dataset is divided into three subsets: training, control (test), and validation samples. The training dataset, 

which is used to adjust the synaptic weights of the neural network, comprises 70% of the total data. The test and validation 

datasets each account for 15% of the data. These subsets are not involved in the training process but are used to evaluate 

the performance and quality of the training for each ANN model. 

In addition to these three primary subsets, a checking sample is also created. This checking sample, consisting of 100 

input-output data pairs, is used to select the best-performing ANN model from the generated network models. The 

checking sample covers a wide range of variations in the following parameters: 

• Outside temperature t = 40 ÷ 45 ℃; 

• Head node voltage U0 = 6 ÷ 6.3 kV; 

• Load factor of transformers kz = 0.8 ÷ 0.85; 

• Head unit power factor cosφ = 0.9 ÷ 0.99; 

• Operating time with maximum load Tmax = 7000 ÷ 7500. 

As illustrated above, the input data sets for the training, test, and validation samples are derived from the same overall 

dataset. In contrast, the input data set for the checking (control) sample is distinct from the others and does not belong to 

the aforementioned general dataset. 

V.ANN ARCHITECTURE SELECTION AND TRAINING 

One of the key challenges in designing an Artificial Neural Network (ANN) is selecting its architecture, including the 

depth, width, type of layers, and number of neurons. Each network type requires a tailored approach. 

For feedforward networks, optimal performance is typically achieved using an ANN with a single hidden layer 

consisting of 8 neurons. The hyperbolic tangent function is employed as the activation function. The training process for 

these networks is carried out using the Levenberg–Marquardt method, which has been found to yield the best results 

compared to other training algorithms (see Fig. 2-3). 

 

 
Fig. 2. Fitting neural network with one hidden layer consisting of 8 neurons 

 

 
Fig. 3. Cascade-forward neural network with one hidden layer consisting of 8 neurons 

VI.COMPARATIVE ANALYSIS OF SIMULATION RESULTS 

To evaluate the quality of the obtained models for assessing technical losses of electrical energy, all the previously 

mentioned samples (training, test, validation, and checking samples) are utilized. The performance of the models is 

assessed using two key evaluation criteria: the Mean Squared Error (MSE) (see Table 1) and the Coefficient of 

Determination (R²) (see Table 2): 
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where, 𝑌𝑖 - the actual value of technical losses of electrical energy calculated using the method of average loads; 

𝑌𝑚𝑜𝑑,𝑖 - the value of technical losses of electrical energy obtained by the ANN model. 

Table 1. The mean square error (MSE) of simulation 

Data samples 
 

unit 

ANN type 

CFNN  FNN 

Training   

 

thousand kW * h 

 

0,0003673 0,00000012 

Control  0,0004713 0,00000031 

Validation 0,0004764 0,00000022 

Checking 0,1370613 0,00009921 

Table 2. The determination coefficient (R2) and calculation time 

Data samples / calculation time  
ANN type 

CFNN  FNN 

Training  0,99991473 0,99999997 

Control  0,99954990 0,99999984 

Validation 0,99963510 0,99999987 

Checking 0,69840612 0,99980014 

Calculation time, sec 2,64 4,18 

To select the best model, the Mean Squared Error (MSE) and the Coefficient of Determination (R²) on the checking 

sample are used as evaluation criteria. As shown by the results, the Fitting Neural Network (FNN) proves to be the most 

accurate model for estimating technical power losses. The evaluation results for this model are presented in Fig. 6. 

Using this algorithm, ANN models were also developed for other 6-10 kV distribution network configurations, where 

the Fitting Neural Network consistently performed as the best model. The assessment results for these networks are 

summarized in Table 3, based on the checking sample. 

Table 3. Results of evaluations on the checking sample for fitting neural network 

№ Scheme data MSE R2 
Calculation 

time, sec 

1 3 branches 1 load 0,00004 0,999 3,25 

2 6 branches 2 loads 0,0021 0,998 3,52 

3 27 branches 11 loads 0,1526 0,992 7,88 

4 43 branches 16 loads 4,2428 0,992 11,93 

 
Fig. 6. Results of evaluations on the control sample for fitting neural network 
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VII.CONCLUSION 

The use of feedforward artificial neural networks (ANNs) for assessing technical losses of electrical energy in 

distribution networks represents a promising alternative to traditional calculation methods. 

Compared to classical techniques, the calculation of technical losses using a trained ANN requires minimal 

computational and time resources, which is particularly advantageous for performing real-time operational calculations. 

Among the four types of feedforward ANNs considered, the Fitting Neural Network (FNN) with a single hidden layer 

consisting of 8 neurons yielded the best results for assessing technical losses, based on evaluations with the checking 

sample. The performance metrics for this model include a Mean Squared Error (MSE) of 0.000099 MW·h and a 

Coefficient of Determination (R²) of 0.9998. 

As the results demonstrate, the calculation error is very small in networks with fewer branches and loads. In networks 

with a larger number of branches and loads, the error slightly increases, but it remains relatively small. This suggests that 

the ANN has been successfully trained and is correctly structured, providing reliable estimates for technical losses. 
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