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ABSTRACT: The distribution of the temperature field of elements of three-dimensional structures is examined in the 

article and the influence of non-homogeneities on the temperature field in three-dimensional axisymmetric structures is 

studied. Based on the variational formulation of the problem, a finite element model for solving axisymmetric problems 

of heat distribution in three-dimensional bodies was built based on the finite element method; a computational algorithm 

of the solution and the software were implemented. Shape functions corresponding to linear triangular elements are used 

in the finite element solution to the problem. They ensure its continuity at the boundary with neighboring elements since 

this distribution is linear along any side of the triangle and with the same change in value at the nodes, the same changes 

will occur along the entire inner boundary. A discrete finite element mesh model is a set of parameters that consist of the 

total number of finite elements and mesh nodes, arrays of their node coordinates, and node numbers of finite elements. 

To verify the reliability of the results obtained, a computational experiment was conducted, related to the study of the 

effect of the increase in the number of finite elements on the convergence of solutions. Analysis of the experimental 

results confirms the numerical convergence of temperature values as the finite element mesh is refined. At the initial 

stage of the study, the influence of temperature distribution for homogeneous structural elements was studied.  

  

I.  INTRODUCTION 

 

Many significant three-dimensional physical problems can be simplified by using two-dimensional elements. For 

instance, the problem of radial heat flux through concentric cylinders with varying thermal conductivities illustrates this 

concept. In a long cylinder, heat flow occurs in both radial and axial directions, and if the boundary conditions are 

independent of the azimuthal angle 𝜃, the heat flux remains unaffected by it. Similarly, the plane flow of water to a well 

is another example of an axially symmetric problem, where the flow characteristics are independent of the azimuthal 

angle 𝜃. Such problems frequently appear in applications, including heat transfer and hydrodynamics, with water flow 

through porous media being a notable example [1]. When applying the finite element method (FEM), the primary 

adaptation lies in the dimensionality of the elements. Two-dimensional symmetric problems are reduced to one-

dimensional ones, while three-dimensional axisymmetric problems are addressed using two-dimensional elements [2-3].  

 

The Finite Element Method (FEM) [4] is a numerical procedure for solving problems formulated as differential equations 

or variational principles. Unlike classical Ritz and Galerkin methods, FEM employs an approximating function that is a 

linear combination of continuous, piecewise-smooth finite functions. These finite functions are non-zero only within 

specific intervals. In FEM, such intervals correspond to finite elements obtained by partitioning the volume 𝑉. The 

numerical methods of linear algebra [5] include techniques for solving systems of linear algebraic equations, matrix 

inversion, determinant calculation, and finding eigenvalues and eigenvectors of matrices. Methods for solving systems 

of linear algebraic equations are divided into two groups. The first group includes direct or exact methods, such as 

Cramer's rule, Gaussian elimination, and the sweep (or Progonka) method. Cramer's rule is rarely used in computing as 

it requires significantly more arithmetic operations than Gaussian elimination. Gaussian elimination, on the other hand, 

is effective for solving systems of up to the 10³ order on computers and is employed in iterative methods for systems of 

up to the 10⁶ order.  
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II.  MATERIAL AND METHODS 

 

The axisymmetric unsteady heat transfer problem in a cylindrical coordinate system is described by the following 

differential equation [1]: 
2 2 2
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where ( , , , )T T r z t=  is the temperature; , ,rr zzK K K  are the thermal conductivity coefficients in the respective 

directions; ( , , , )Q Q r z t=  - the power of heat sources within the body;   - material density; с – heat capacity of the 

material; r - the distance from the symmetry axis to the center of the element;   - - azimuthal angle. If a three-dimensional 

body has geometric symmetry about the 𝑧-axis, it is called an axisymmetric body (Fig 1). Moreover, if the physical 

quantity under study is independent of the azimuthal angle 𝜃, then the differential equation (1) takes the following form: 
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Fig 1. Appearance of an axisymmetric body. 

To solve the problem, its variational form is considered, which allows the use of approximate solution methods, one of 

which is the finite element method. The functional formulation of the problem [1] is expressed in the following form: 
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where V  – volume; q – heat flow; h – heat exchange coefficient with the external environment; Tb – ambient temperature; 

1S  - surface area to which heat flux is applied; 2S  - surface area where convective heat exchange occurs. 

In ChEU, the area occupied by the object under consideration is divided into small finite elements. A triangular element 

is chosen as the finite element. Within each finite element, temperature approximation functions are constructed 

separately. The temperatures at the nodal points are chosen as the main unknowns. The temperature inside the triangular 

element (e) is approximated by a linear polynomial: 
( )

1 2 3( , , )eT r z t r z  = + +      (4) 

The temperature function is given by the following formula: 
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The following shape functions are applied to this finite element [6]: 
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The surface area of a finite element is calculated by the following formula: 

1 1

2 2

3 3
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1
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r z

A r z

r z

=  , 

The coefficients included in the shape functions depend on the coordinates of the nodes and are listed below: 

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1
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, , ,
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, , .
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( )eB    - the gradient matrix can also be written: 
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The thermal conductivity matrix of the body is as follows: 
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where ( )1 2 3 / 3r r r r= + +  represents the distance from the axis of symmetry to the center of the element. 

The differential equation with respect to time for the element e is as follows: 
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For all m finite elements, we can substitute expressions (4) - (9) into expression (3) to obtain: 
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As a result of minimizing functional (10), the following system of equations is formed: 

     1 1

0
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The contribution of each finite element to the total sum (11) can be expressed as a matrix differential relation: 

 
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where is the thermal conductivity matrix of the element: 

           
3e e

T T

e e e e e e

V S

K B D B dV h N N dS= +  ,    (13) 

The heat capacity matrix of the element: 

     
e

T

e e e

V

C c N N dV=  .      (14) 

The heat flux vectors at the node are the heat flux density q , the heat source Q , and the convective heat transfer 

coefficient, respectively: 
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Summarizing the contributions of all elements (11), a system of differential equations is formed: 

            
q g h

C T K T Q Q Q
t


+ = + +


     (18) 

 

where  K  - generalized heat transfer matrix;  C  - generalized heat capacity matrix;  
q

Q  - heat flux vectors at the 

node;  
g

Q  - heat source vector at the node;  
h

Q  - convective heat transfer vector at the node. 

Let us consider the solution of the differential equation (18) by the finite difference method using the central difference 

scheme. This equation is written in the following form: 

        C T K T Q
t


+ =


      (19) 

where        
q g h

Q Q Q Q= + + . 

The derivative of the generalized vector  T  at the midpoint of the time interval 
1n n

t t t
+

= −  is expressed as 

follows. 
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T T T
t t +
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
     (20) 

The generalized temperature and nodal point load vector at this midpoint of the time interval is calculated as follows: 

     ( )1
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2 n n
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+
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+
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Substituting expressions (20) - (22) into the differential equation (19), we obtain the following recurrent formula[8]: 

             
1

2 2
2

n n
K C T C K T Q

t t+

   
+ = − +   

   
    (23) 

Knowing the temperature at the node at the beginning of the time interval, the temperature at the end of the time interval 

can be determined using formula (23). When the thermophysical properties (thermal conductivity, specific heat capacity, 

thermal conductivity during convection) are independent of temperature, the matrices are calculated until equation (23) 

is solved. If the thermophysical properties depend on temperature, then the equation is nonlinear and must be solved by 

iteration methods.  
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III. SIMULATION&RESULTS 

 

Problem 1: The transient heat conduction problem in an axisymmetric body made of steel is considered, where the 

objective is to determine the temperature distribution within the body. The cross-sectional view and dimensions of the 

axisymmetric body are shown in Figure 2.a. The inner surface of the body is subjected to a constant heat input of 100°C. 

Heat exchange occurs between the lateral surfaces of the body and the external environment, which is at a temperature 

of 20°C. The heat transfer coefficient between the lateral surfaces and the external environment is given as 
210 / ( )h W K m=  . The initial temperature ( 0t s= ) of the body is uniform at 20°C. Steel has the following 

thermophysical properties: 46 / ( )W m C =  , 37800 /kg m = , 460 / ( )c J kg C=  .  

a b 

Fig 2. Axisymmetric body cross-section and finite element mesh. 

To verify the reliability of the obtained results, a computational experiment was conducted to numerically study the effect 

of increasing the number of finite elements on the convergence of the solutions. Table 1 presents the number of finite 

elements and nodes in the discrete model for various configurations. 

Table 1. Finite elements and number of nodes 

Options 1 2 3 4 

Finite elements 156 622 1388 2492 

Nodes 98 350 752 1323 

The temperature readings at the control points over 60 seconds are presented in Table 2 (with a time step of 6t s = ). 

The analysis of the experimental results confirms the convergence of temperature values due to the increased number of 

finite elements. Figure 2.b shows the fourth configuration of the finite element mesh. The numerical results of the problem 

solved for the 60-second temperature field using the fourth discrete model configuration, along with the visualization and 

isotherms, are presented in Figure 3. 

Table 2. Temperature at 60 second control points (oC) 

Variantlar koordinata (10sm, 10sm) % koordinata (20sm, 15sm) % 

1 75,823 
4,3 

50,297 
6,4 

2 72,554 47,062 

1,9 3,5 

3 71,108 45,394 

0,14 0,22 

4 71,005 45,494 
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Fig 3. 60-second visualization of the temperature field and isotherms. 

 

 

Problem 2: The transient heat conduction problem is considered for an axisymmetric copper body that includes two 

additional layers (Figure 5.a). The inner surface of the body is subjected to a constant heat input of 100°C. Heat exchange 

occurs between the lateral surfaces of the body and the external environment, which is at a temperature of 0°C. The heat 

transfer coefficient between the lateral surfaces and the external environment is denoted as 210 / ( )h W K m=  . The initial 

temperature ( 0t s= ) of the body is uniform at 50°C. Copper possesses the following thermophysical properties: 
3

1 1 1/384 / ( ), 8800 , 381 / ( )W m С kg m с J kg С  =  = =   

Thermophysical parameters of the additional coating material: steel (2, in Fig. 5.a): 
3

2 2 2/46 / ( ), 7800 , 460 / ( )W m С kg m с J kg С  =  = =   

and iron (3, in Figure 3.a): 
3

3 3 3/71 / ( ), 7900 , 460 / ( )W m С kg m с J kg С  =  = =   
A general view of the finite element mesh of a non-homogeneous axisymmetric solid cross-section is presented in 

Figure 4.b. 

a 

b 

Fig 4. Cross-section and finite element mesh of an axisymmetric body. 

The finite element mesh used to solve the problem includes the following parameters: 979 nodes, 1848 finite elements, 

a system of equations with a dimension of n=979, a bandwidth of 34 for nonzero elements, and a total simulation time of 

600 seconds. Table 3 compares the numerical values at the control points in the cross-section of the axisymmetric body 

at t=30 seconds for homogeneous and non-homogeneous cases. The results indicate that due to the differing physical 

properties of iron and steel materials, the temperature values exhibit distinct variations. 

Table 3. Numerical values of the temperature field 

Points(cm) A(1, 9)  B(1, 11)  C(1, 13)  D(17, 9)  E(17, 11)  F(17, 13)  

homogeneous 96,554 95,433 94,719 96,697 95,548 94,791 

non-homogeneous 96,478 94,418 93,295 96,698 94,957 93,751 
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The graphs of temperature variations for homogeneous and non-homogeneous axisymmetric bodies at t = 5, 10, 15, 30, 

45, and 60 seconds with r = 10 cm are shown in Figure 5. An analysis of the results demonstrates that the algorithm 

developed for solving the problem using the finite element method (FEM) accurately accounts for the geometric and 

physical parameters of the axisymmetric body. A comparison of the temperature distribution curves (Figure 5) shows 

that the resulting curves stabilize over time. To ensure accuracy, Figure 6 presents the isotherms at t = 5, 10, 15, and 30 

seconds. Over time, the influence of the additional layers in the non-homogeneous axisymmetric body becomes 

increasingly evident. 

  

Fig 5. Change in body temperature along a horizontal distance r=10 cm. 

 

 
5-sec 

 
10-sec 

 

 
15-sec 

 
30-sec 

Fig 6. Isotherms at t = 5, 10, 15 and 30 seconds. 

 

IV. CONCLUSION  

 

To verify the accuracy of the algorithm for solving the transient heat conduction problem in an axisymmetric body, a 

computational experiment was conducted by increasing the number of elements. The transient heat conduction problems 
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for both homogeneous and non-homogeneous axisymmetric bodies were solved, and the temperature values at control 

points were determined and analyzed. The results indicate that due to the differing physical properties of the materials 

and the presence of a circular cross-sectional cavity in the body, the temperature field undergoes redistribution.  
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