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ABSTRACT: The symmetric ADMM algorithm with large step sizes has been widely applied to distributed and large-

scale optimization problems. Building on this foundation, accelerated stochastic versions of the algorithm have also 

demonstrated excellent performance. This paper explores the separable convex minimization problem, where the 

objective function is expressed as the sum of multiple independent functions, each depending on different sets of variables. 

When the standard SAS-ADMM is directly applied to such problems, convergence is not always guaranteed. To address 

this challenge, we propose a multi-block symmetric accelerated stochastic ADMM (LAR-ADMM) algorithm with large 

step sizes. The objective function is formed by combining a potentially non-smooth convex function with the mean of 

several smooth convex functions. In each iteration, the proposed method updates the Lagrange multipliers twice, 

incorporating the principles of ADMM and techniques from accelerated stochastic gradient methods. It may also employ 

variance reduction techniques to solve the smooth subproblems more effectively. We demonstrate the global convergence 

of the proposed method under certain mild conditions and provide an analysis of its convergence rate. 
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I.INTRODUCTION 

 

We investigate the structured separable convex optimization problems subject to linear equality constraints as follows: 

 

   (1) 

 

where ,  are closed convex subsets, ,  are given,

 is a convex function that may be non-smooth, and is the average of convex functions mapping 

real values： 
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We assume that each function , defined on an open set containing , is differentiable on  and has Lipschitz 

continuous derivatives. Here,  represents the sample size, and  refers to the empirical loss.  significant challenge 

in dealing with problems of the form (1) is that  can be exceedingly large, making the evaluation of f or its gradient 

costly at each iteration. The augmented Lagrangian of equation (1) is given by 

 

 ( ) ( )
2

, , , , ,
2
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 = + + −  (2) 

here,  denotes the penalty parameter,  represents the Lagrange multiplier, and the Lagrangian of (1) is given by 

 

              (3) 
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First, let us consider the case of two blocks, specifically the scenario where  in Model (1). We begin by 

examining a classical Alternating Direction Method of Multipliers (ADMM), which leverages separable structures in its 

algorithm design. This method [1] has received increasing attention [2] across various fields in recent years. The 

algorithm follows an iterative procedure described as follows: 

 

 

 

Here,  denotes the Lagrange multiplier associated with the linear constraint in (1), and  represents the 

penalty parameter [5]. 

Applying the Peaceman-Rachford Splitting Method (PRSM) to the dual formulation of (1) [6], we derive a variant of 

ADMM, this can be written in the following iterative form: 
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PRSM [8] is also known as Symmetric ADMM (S-ADMM) because, in each iteration, the Lagrange multipliers are 

symmetrically updated twice. It is crucial to highlight that both updates of the dual variable in PRSM employ a constant 

step size of 1. Inspired by the concept of increasing the dual step size as discussed in [16], Gu et al. In [13], a symmetric 

proximal ADMM was proposed, where the dual variable is updated twice using different step sizes. Additionally, He et 

al. [17] proposed the following extension of the S-ADMM: 
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(4) 

 

For convergence, the step size pair  [3] must fall within the following region: 

  (5) 

 represents the maximal convergence region for the dual step size [7] in the current symmetric ADMM-type 

algorithms. 

This paper examines the use of S-ADMM [4] to solve separable convex minimization problems (1) [9], where the 

objective function [18] is the sum of two or more functions, each independent of coupling variables. In this scenario, 

when extending the shrinkage of symmetric ADMM [19] (4) to directly address problem (1), the following iterative 

scheme is derived [12]: 
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  (6) 

 

Please note that in the standard deterministic S-ADMM for (1), the gradient method [15] is commonly used to address 

the subproblem associated with . As a result, evaluating the gradient of  at each iteration requires calculating the 

gradients of the individual component functions . In large-scale data applications [ 1,14], computing the full gradient 

at each iteration can become too computationally expensive when  is large. Nevertheless, the stochastic gradient [19] 

can be utilized to develop a stochastic gradient-based approach, allowing for the fast yet inexact solution of  

[9,10,11]. 

Building on the previous analysis and observations, we propose a multi-block accelerated stochastic S-ADMM splitting 

method [20] to tackle the structural empirical risk minimization problem (1). 

 
II. PRELIMINARIES 

 

2.1 Notations and assumptions 

Let  denote the set of real numbers,  the space of n-dimensional real column vectors, and  the set of real 

 matrices. The symbols  and  represent the identity matrix and the zero matrix/vector, respectively. For 

symmetric matrices  and  of the same dimension, the notation  (or  ) indicates that the matrix 

is positive definite (or semidefinite). The symbol   represents the Euclidean norm associated with the inner 

product , while  denotes the gradient of the function  at the point . Additionally,  signifies the 

expected value of a random variable. let us denote 

 

  (7) 

 
And 

 

  (8) 
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We also define 

  

 
We posit the following dual hypotheses: 

Assumption 1. The solution set  of the primal-dual problem (1) is nonempty. 

Assumption 2. For any positive definite matrix , there exists a constant  such that the gradients  

satisfy the general Lipschitz condition. 

 

 11 2 1 2( ) ( ) .j jf f − − −x x x x‖ ‖ ‖ ‖HH
„  (9) 

 

for every  and . 

 

2.2Variational characterization of (1) 

Let . It is widely recognized that a point 

 

which is referred to as the saddle-point of , if it satisfies the following inequalities  

 

  (10) 

 
which can be expressed as 

 

  (11) 

 
Using the previously defined notations, these inequalities can be reformulated as follows 

 

  (12) 

 
As the affine mapping  is skew-symmetric, 

 

  (13) 

 
Therefore, 
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  (14) 

 
The previous analysis shows that the saddle point  can also be described by the variational inequality presented in 

equation (14). 

 

III. SECURITY GAME MODELING UNDER COGNITIVE UNCERTAINTY 

 
Building on the stochastic AS-ADMM introduced in [3], we present a multi-block Symmetric Accelerated Stochastic 

ADMM (LAR-ADMM), which features a dual step-size region  (5) similar to that of GS-ADMM. 

 

 
 

IV. CONVERGENCE ANALYSIS 

 

To establish the convergence of Algorithm 3, we first present the following lemma, which addresses the iterates 

generated by the  routine in Algorithm 3. This lemma, originally introduced in [3], is provided here without a 

proof. 

 

Lemma 4.1. [3, Lemma 3.2] Let .  Assume that  and Assumption 2 holds. Under 

these conditions, the iterates produced by Algorithm 3 satisfy the following 
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Lemma 4.2. Assume that . Under this condition, the iterates produced by Algorithm 3 satisfy the 

following properties: 

 ( ) ( ) , ( ) ( ) ( ) ,k k k k k k

kF F Q − + −  − − +w w w w w w w w w
TJ  (18) 

For every , where  and are given by (17) and (16), respectively: 

 

  (19) 

and 

 

  (20) 

 
Proof: The -subproblem in Algorithm 3 can be reformulated as 

 
1 1( ) ( ) , 0, ,

i

k k k

i i i i y ig y g y y y p y Y+ +− + −     (21) 

where 

 

 (22) 

 
The preceding equality employs the following relation 
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Based on the definition of , it follows that 

  (24) 

 

By taking the inner product of both sides of the above equation with , we derive the following result 

 

 ( ) ( )
1

1
, , .

q
k k k k k k k k

i i i i

i

Ax B y b B y y     
=

− + − = − − − + −  (25) 

 
Thus, inequality (18) is derived by integrating (21) and (25) along with property (13), this certificate completes. 

In addition, combining equation (21) with the definition of , we obtain 

 

  (26) 

 
By summing the inequality above from  to , we can deduce that  satisfies the first-order optimality 

condition, thereby acting as a solution to the following problem: 
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The following corollaries are presented to support the establishment of the main convergence theorem for Algorithm 3. 

 

Corollary4.1. Assume that . Then, the iterates generated by Algorithm 3 satisfy the following 

conditions: 
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where  is defined in (18), and 
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Proof: According to the method of generating , we obtain 

 

  (31) 

 
and by the definition of , we have 

 

  (32) 

 
  

Therefore, the relation 
1 1( ) ( )k k k k

k kQ Q P− +− = −w w w w  holds and 

http://www.ijarset.com/


    

 
ISSN: 2350-0328 

International Journal of AdvancedResearch in Science, 

Engineering and Technology 

Vol. 12, Issue 3, March 2025 

 

 

Copyright to IJARSET                                              www.ijarset.com                                                              22944 
    

 

 

 

 

 

 

  (33) 

 
For all , the consequences of equation (18) and the preceding relationship imply that 
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where the equation uses the constant 
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Now, we again derive from (32) that 
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This certificate completes. 
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In Corollary 4.1 and its proof above, since  may not be positive semidefinite for any given parameter , we define 

the notation . We will now proceed to demonstrate the positive semi-definiteness of the 

matrix . 

 

Lemma 4.3. Given that  for , the matrix  defined in (5) is symmetric and positive 

semidefinite for all . 
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 (37) 

 

is semipositive, 

 

where  
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Next prove the global convergence of Algorithm 3. 

Lemma 4.4. Assume that . Then, for any pair  in  as defined in (5), the following holds 
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where   given by equation (27), and 

  (39) 

Proof: Based on Lemma 4.5 from reference [4] and 
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given that , it follows from , and  that inequality (38) holds. 

 

The subsequent theorem provides a foundational convergence result for Algorithm 3. 

 

Let us assume that for some integers  and , the following conditions are satisfied for all : 

(1)  and the sequence  is nondecreasing; 

(2) we have that , and for some , it holds that . 
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where 

 

, . 
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Proof: Assume , it follows that . By substituting equation (38) into (28) and 

applying the relation , Lemma 4.5 leads to the conclusion that 
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summing the above inequality over  in the interval : 
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This conclusion is derived from the convexity of  and the definition of . 
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By dividing (43) by  and applying (44), we derive 

 

 2
2 2

1

2 3

1

1
( ) ( ) ( ) ( )

1
.

2 k

T
T k

T T

k

q
k

i i i iQ L
i

F w F w w w J w
T

w w r Ax B y b r y y





   


+

=

−

=


− + −  −



  
+ − + + − + − 
  





 (45) 

 

We will now focus on the terms involving  and proceed to evaluate its expected value. The sequence 

 is non-decreasing for , and since , we obtain the following result: 
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where ( ) ( ) ( )
t

t t tt t tf f f =  − =  − −x d x x e , 

the quantity depends solely on the index . As a result, since the random variable  is chosen with 

equal probability, it follows that , which also implies . Moreover, the iterate , which depends 

on , results in  . Coupled with the assumption , it follows that 
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Given that and based on the definition of  in equation (14), along with the previously mentioned inequality 

and the assumption , we derive the following result 
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The proof is completed by taking the expectation of both sides of equation (45) and utilizing the result from equation 

(46). 

 

We will now analyse the convergence rate of Algorithm 3: 
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By selecting appropriate values for  and  as outlined in (41), we can achieve the following results: 
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Considering that ,  are constants, and  is a fixed integer, Theorem 3 directly implies that 
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In practice, users can choose a sufficiently large value of  such that . As  increases, both  and  

approach infinity and zero, respectively. To satisfy the condition  in condition (1), it is 

feasible to choose a sufficiently large  if necessary. Given that  is constant and  

for , condition (1) is satisfied for this choice of . As a result, we obtain the following convergence theorem, 

analogous to the proof in [2, Theorem 4.2]. 
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Assuming the conditions in Theorem 1 are met, and with  and  selected as per equation (48), it follows that for all 

, it follows that 
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for , , while for , . 

 

V. NUMERICAL EXPERIMENTS  

 

In this section, we conduct numerical experiments to evaluate the performance of the proposed multi-block extension of 

the accelerated stochastic ADMM algorithm. Specifically, we consider the graph-guided fused lasso problem, a 

representative sparse optimization problem widely applied in machine learning for handling tasks with graph-structured 

sparsity patterns. Given feature-label pairs , where  denotes the number of samples 

( ), the graph-guided fused lasso problem can be formulated as: 

 

 

 

where  represents the logistic loss function: 

 

 

 
and  is the regularization parameter controlling sparsity. The matrix  encodes the graph structure , 

derived from sparse inverse covariance estimation, combined with an identity matrix . 

To exploit the efficiency of the ADMM framework for separable structures, we introduce an auxiliary variable , 

reformulating the above problem as: 
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The reformulated problem allows for efficient computation by leveraging the separable structure. Specifically, the 

subproblem related to  benefits from a closed-form solution when the coefficient matrix associated with  in the 

constraints is . In this case, setting  in the proposed multi-block stochastic ADMM framework simplifies the 

-update step. With , the subproblems in the multi-block framework have the following updates: 
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 (51) 

 

where the operator  applies soft-thresholding, which can be efficiently computed using available numerical 

libraries. 

In the numerical experiments, the penalty parameter  is set to 0.001, while the adaptive matrix updates  follow 

the dynamic adjustment strategy outlined in the literature. Specifically: 
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Initial values are configured as , . The matrix  is set to  to maintain stability and 

enhance convergence. 

 

To address stochastic variations, the vector  introduced for variance reduction is configured as: 

 

 
1 1( ) ( ), if ,

0, otherwise,

tk k k

t

f x f x m l
e

− − − 
= 


 (52) 

 

where  represents the ergodic mean of the -iterates. This design ensures effective gradient estimation while 

balancing computational cost. 

Following Theorem 1, the performance is evaluated using two primary metrics: 

 

 

*

*

| ( , ) |
Obj.err , Equ.err .

max{ ,1}

F x y F
Ax y

F

−
= = −‖ ‖ (53) 

 

The optimization error combines these two components to provide a comprehensive measure of the algorithm's 

convergence behaviour under varying conditions. 

To evaluate the effectiveness of the proposed algorithm, we measure the maximum of the relative objective value error 

and the constraint violation error, defined as: 

 

 Opt _ err= max(Obj_ err,Equ _ err),  (54) 

 

where  represents the relative difference between the objective value  and its approximate optimal 

value  (computed using prolonged runs of Algorithm 3), and  measures the norm of constraint violations 

. This unified metric provides a comprehensive assessment of both the objective accuracy and the feasibility 

of solutions. 

The starting point for all experiments is initialized as . 

The dataset used is the widely studied ̀ mnist` dataset, which includes 11,791 samples and 784 features (i.e., , 

$l = 784$). It was obtained from the LIBSVM repository, and the regularization parameter  in problem (50) is set to

. We conducted multiple consecutive runs for each algorithm under CPU time budgets of 20 s, 50 s, 100 s, and 200 

s, respectively. The average comparative results are illustrated in the following figures, where the horizontal axis 

represents  time and the vertical axis denotes the optimization error . 

http://www.ijarset.com/


    

 
ISSN: 2350-0328 

International Journal of AdvancedResearch in Science, 

Engineering and Technology 

Vol. 12, Issue 3, March 2025 

 

 

Copyright to IJARSET                                              www.ijarset.com                                                              22951 
    

 

 

 

 

 

 
 

From the numerical experimental results presented in the figure, LAS-ADMM and LAR-ADMM exhibit different 

convergence behaviours under varying CPU time budgets. 

 

1. Convergence Speed and Stability of Optimization Error: In the initial stages, LAS-ADMM shows a faster 

decrease in optimization error, especially within the short time frame, demonstrating superior early-stage 

performance. However, LAR-ADMM exhibits better stability over extended time periods, with its error curve 

becoming smoother as the optimization progresses. This suggests that although LAR-ADMM may have a slower 

initial convergence rate, its dynamic adjustment mechanism provides greater robustness in long-term optimization, 

ensuring stable progress even in the face of complex tasks. 

 

2. Advantages of the Dynamic Adjustment Mechanism: LAR-ADMM’S dynamic adjustment mechanism is 

particularly beneficial for more complex optimization tasks. For long-duration optimization processes or intricate 

problems, LAR-ADMM effectively addresses fluctuations in the error through step size adjustments, ensuring stable 

results in large-scale problems. Notably, under extended time budgets (such as 100 s or 200 s), LAR-ADMM's 

optimization error stabilizes, demonstrating strong global convergence and robustness. 

 

3. Global Convergence: While LAR-ADMM may exhibit slower convergence in the early and middle phases, it 

ultimately reaches a comparable optimization error level to that of LAS-ADMM. This indicates that LAR-ADMM 

excels in global convergence. Especially for complex or large-scale problems, LAR-ADMM ensures stability in 

convergence to near-optimal solutions, highlighting its advantage in handling challenging optimization tasks. 

 

4. Applicable Scenarios: LAR-ADMM’S primary advantage lies in its suitability for larger-scale optimization 

problems, particularly those requiring longer optimization durations. Its dynamic adjustment mechanism enables it 

to effectively handle more complex tasks, ensuring stability over time. In contrast, LAS-ADMM is more suited for 

problems requiring rapid convergence within shorter time frames. In practical applications, LAR-ADMM is the 

preferred choice for optimization tasks that demand higher global convergence and stability. 

 

 

5. Final Performance: Even with longer CPU time budgets (such as 100 s or 200 s), LAR-ADMM maintains a stable 
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optimization error at a low level. Although its error decreases more slowly in the initial stages, its stability and global 

convergence in the later stages ensure that it ultimately reaches comparable results to LAS-ADMM. This 

demonstrates that LAR-ADMM is better suited for large-scale optimization tasks or those requiring long-term 

optimization, providing reliable results while maintaining robustness and stability. 

 

VI. CONCLUSION 

 

LAR-ADMM exhibits notable advantages in terms of stability and global convergence over extended time horizons. 

While its convergence rate in the initial and intermediate phases is slower compared to LAS-ADMM, it ultimately 

achieves a comparable level of optimization error, making it well-suited for large-scale or long-duration optimization 

tasks. The dynamic adjustment mechanism of LAR-ADMM ensures robust performance in complex scenarios where 

stability is a priority. 
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