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ABSTRACT: In this paper we consider an equiform motion of a sinusoidal curve in the Euclidean space   E5. We are 

studying locally and analyze corresponding the two-dimensional kinematic surfaces when the scalar curvature 𝐾 is 

constant. We describe the equations and give examples that govern such the surfaces. 
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I. INTRODUCTION 

 The sine curve or sinusoid is a mathematical curve that describes a smooth repetitive oscillation. It is named after 

the function sine, of which it is the graph. It occurs often in pure and applied mathematics, as well as physics,  

engineering, signal processing and many other fields. The sine wave is important in physics because it retains its wave 

shape when added to another sine wave of the same frequency and arbitrary phase and magnitude. It is the only 

periodic waveform that has this property. This property leads to its importance in Fourier analysis and makes it 

acoustically unique. 

In the 𝑛-dimensional Euclidean space 𝐸𝑛 , an affine transformation whose linear part is composed by an orthogonal 

and a homothetical transformation is called an equiform transformation [8, 13, 14, 15, 16, 4, 10]. Such an equiform 

transformation maps points 𝑥 ∈ 𝐸𝑛   according to the rule 

 

𝑥 → 𝑠 𝐴 𝑥 + 𝑑, 𝐴 ∈ 𝑆𝑂 𝑛 , 𝑠 ∈ 𝑅+,𝑑 ∈ 𝐸𝑛 .                         (1) 

 

The positive number 𝑠 represents the scaling factor. Eq. (1) defines an equiform motion if its parameters, including 𝑠, 

are given as functions of the time variable 𝑡. Hence, a smooth one-parameter equiform motion moves a point 𝑥 via the 

relation  𝑥 𝑡 =  𝑠 𝑡 𝐴 𝑡 𝑥 𝑡 + 𝑑 𝑡 , 𝑡 ∈ 𝑅+,  the kinematic corresponds to this transformation group is called 

equiform kinematic [5, 7]. 

 

Under the assumption of the constancy of the scalar curvature, kinematic surfaces studied by the motion of a circle 

have been obtained in [3]. Moreover, the hypersurfaces in space forms generated by one-parameter family of spheres 

having constant curvature are considered in [6, 9, 11, 12]. 

 

In this paper, we consider the equiform motions of a sinusoidal curve 𝑐0 in 𝐸𝑛 . The point paths of the sinusoidal 

curve generate a two dimensional kinematic surface 𝑋, containing the position of the starting sinusoidal curve 𝑐0. At 

any moment, the infinitesimal transformations of the motion will map the points of the sinusoidal curve 𝑐0 into the 

velocity vectors whose end points will form an affine image of 𝑐0 that will be, in general, a sinusoidal curve in the 

moving space 𝛴. Both curves are planar and therefore, they span a subspace 𝑊 of 𝑅𝑛 , with dim(𝑊) < 5. This is the 

reason why we restrict our considerations to dimension 𝑛 = 5. 

 

Let 𝑥(𝜑) and 𝑋(𝑡,𝜑) denote the parameterization of 𝑐0 and the resultant two-dimensional kinematic surface by the 

equiform motions, respectively, we can consider a certain position of the moving space given by 𝑡 =  0, and obtain 
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information about the motions, at least during a certain period around 𝑡 =  0, if its characteristics for one instant is 

given. The purpose of this paper is to describe the scalar curvature 𝐾 of the two-dimensional kinematic surfaces 

obtained by the motion of a sinusoidal curve locally. 

 

II. LOCALLY REPRESENTATION OF THE MOTION 

 

  In two copies 𝛴0 ,𝛴  of Euclidean 5-space  𝐸5 , we consider a sinusoidal curve 𝑐0 in the 𝑥1𝑥2 -plane of 𝛴0  and 

represented by 

 

𝑥 𝜑 =  𝑎 𝜑, 𝑠𝑖𝑛𝜑, 0,0,0 𝑇 , 𝜑 ∈  0,2𝜋 . 
 

The general representation of the equiform motion in 𝐸5 of this curve is given by: 

 

𝑋 𝑡,𝜑 = 𝑠 𝑡 𝐴 𝑡 𝑥 𝜑 + 𝑑 𝑡 , 𝑡 ∈ 𝐼 ⊂ 𝑅.                   (2) 
 

Here, 𝑑(𝑡)  =   𝑏1(𝑡)   , 𝑏2(𝑡) , 𝑏3 𝑡 , 𝑏4 𝑡 , 𝑏5(𝑡) 𝑇 is the position of the origin at time  𝑡 , 𝐴(𝑡) = ( 𝑎𝑖𝑗 (𝑡) ) ( 𝑖 , 𝑗 =

 1, . . . , 5 ) is an orthogonal matrix and 𝑠(𝑡) is the scaling factor of the moving system. Using Taylor's expansion up to 

the first order, the representation of the motion is given by: 

 

𝑋 𝑡,𝜑 =  𝑠 0 𝐴 0   𝑠 0 𝐴 0 +  𝑠 0 𝐴˙ 0  𝑡 𝑥 𝜑 +  𝑑 0 +  𝑡 𝑑˙ 0 . 
 

Where "." denotes the differentiation with respect to the time variable 𝑡. As an equiform motion has an invariant point, 

we can assume without loss of generality that the moving frame 𝛴0 and the fixed frame 𝛴 coincide at the zero position 

𝑡 = 0. Then we have  𝐴 0 = 𝐼, 𝑠 0 = 1 . and 𝑑(0) = 0. Thus 

 

𝑋 𝑡,𝜑 =   𝐼 +    𝑠′𝐼 + ῼ  𝑡 𝑥 𝜑 +  𝑡 𝑑′. 
 

Where ῼ =   𝐴˙(0)  =  𝜔𝑘 , 𝑘 =  1, 2, 3, . . . , 10,𝑑′ =   𝑑˙(0), 𝑠′ =   𝑠˙(0) and the representation of the motion up to the 

first order is given by: 

 

                       

 
 
 
 
 
 
 
𝑋1

𝑋2

𝑋3

𝑋4

𝑋5 
 
 
 
 
 
 

(𝑡,𝜑) = 

 
 
 
 
 
 
 
1 + 𝑠´𝑡 𝑡𝜔1 𝑡𝜔2 𝑡𝜔3 𝑡𝜔4

−𝑡𝜔1 1 + 𝑠´𝑡 𝑡𝜔5 𝑡𝜔6 𝑡𝜔6

−𝑡𝜔2 −𝑡𝜔5 1 + 𝑠´𝑡 𝑡𝜔1 𝑡𝜔1

−𝑡𝜔3 −𝑡𝜔6 −𝑡𝜔8 1 + 𝑠´𝑡 𝑡𝜔1

−𝑡𝜔4 −𝑡𝜔7 −𝑡𝜔9 −𝑡𝜔10 1 + 𝑠´𝑡 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
𝑎𝜑

𝑠𝑖𝑛𝜑

0

0

0  
 
 
 
 
 
 

 +

 
 
 
 
 
 
 
𝑏1
′

𝑏2
′

𝑏3
′

𝑏4
′

𝑏5
′  
 
 
 
 
 
 

 , 

 
or in the equivalent form 

 

                                           

 
 
 
 
 
 
 
𝑋1

𝑋2

𝑋3

𝑋4

𝑋5 
 
 
 
 
 
 

 = 

 
 
 
 
 
 
 
1 + 𝑠´𝑡

−𝑡𝜔1

−𝑡𝜔2

−𝑡𝜔3

−𝑡𝜔4  
 
 
 
 
 
 

 𝑎𝜑 + 

 
 
 
 
 
 
 

𝑡𝜔1

1 + 𝑠´𝑡

−𝑡𝜔5

−𝑡𝜔6

−𝑡𝜔7  
 
 
 
 
 
 

 𝑠𝑖𝑛𝜑 + 𝑡 

 
 
 
 
 
 
 
𝑏´1

𝑏´2

𝑏´3

𝑏´4

𝑏´5 
 
 
 
 
 
 

,                                      (3)    

For any fixed 𝑡  in the above expression (3), we generally get a sinusoidal curve with its intersection 

point𝑡 (𝑏1
′ , 𝑏2

′ , 𝑏3
′ , 𝑏4

′ , 𝑏5
′ ) subject to the following condition 
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𝜔2𝜔5 + 𝜔3𝜔6 + 𝜔4𝜔7 = 0                     (4) 

III. SCALAR CURVATURE OF THE TWO DIMENSIONAL KINEMATIC SURFACE  

 

In this section, we give a calculating formula of the scalar curvature of a sinusoidal curve surfaces in 𝐸5 generated 

by an equiform motions. The tangents to the parametric curve 𝑡 = const, 𝜑 = const of this surface (2), are represented 

by: 

 

𝑋𝑡 𝑡,𝜑 =  𝑠′𝐼 + ῼ 𝑥 𝜑 +  𝑑′ , 𝑋𝜑(𝑡,𝜑) = [𝐼 + (𝑠′𝐼 + ῼ)𝑡] 𝑥′(𝜑). 

 
The first fundamental quantities of a sinusoidal surface are given by: 

 

𝑔11 = 𝑋𝑡
𝑇  𝑋𝑡  ,        𝑔12 = 𝑋𝜑

𝑇  𝑋𝑡 , 𝑔22 = 𝑋𝜑
𝑇  𝑋𝜑 . 

 
A straightforward computation leads to the coefficients of the first fundamental form defined by 

 

                     𝑔11 = [ 𝑠′𝐼 − ῼ 𝑥𝑇(𝜑) + 𝑑′𝑇][(𝑠′𝐼 + ῼ)𝑥(𝜑) + 𝑑′], 
                     𝑔12 = 𝑥′𝑇 𝜑   𝑠′𝐼 + ῼ 𝑥 𝜑 + 𝑑′  ,                                                                            

                         𝑔22 = 𝑥′𝑇(𝜑)𝑥′(𝜑). 
 

Thus 

 

                     𝑔11 = 𝛼 + 𝛽𝜑 + 𝛾𝜑2 + 𝜎 𝑠𝑖𝑛 𝜑 − 𝛿𝑐𝑜𝑠 2𝜑, 

                     𝑔12 = 𝑎 𝑏1
′ +

1

2
𝛽 𝑡 +  𝑎2 𝑠′ + 𝑡 𝛾 𝜑 +  𝑏2

′ +
1

2
𝑡 𝜎 − 𝑎 𝜔1𝜑 𝑐𝑜𝑠 𝜑 +  𝑎𝜔1𝑠𝑖𝑛 +

                                          
1

2
𝑠′ + 𝑡 𝑠𝑖𝑛 2𝜑,                                                               (5)   

 𝑔22 =  
1

2
+ 𝑎2  1 + 2𝑠′𝑡 +  𝛾 + 𝛿 𝑡2 +  

1

2
+ 𝑠′𝑡 + 𝑡2𝛿 𝑐𝑜𝑠 2𝜑. 

Where 

 

                          𝛼 =  𝑏′𝑖
2  

5

𝑖=1
 +

1

2
 𝑠′2 + 𝜔1

2 +  𝜔𝑖
27

𝑖=5  , 

 

                           𝛽 = 2𝑎(𝑏1
′  𝑠′ −  𝑏𝑖+1

′ 𝜔𝑖
4
𝑖=1 ), 

 
                           𝛾 = 𝑎2(𝑠′2 +  𝜔𝑖

24
𝑖=1  ), 

 

                           𝛿 =
1

2
 𝑠′2 + 𝜔1

2 +  𝜔𝑖
27

𝑖=5  ,                               (6) 

 
                               𝜎 = 2(𝑏2

′ 𝑠′ + 𝑏1
′𝜔1 −  𝑏𝑖

′𝜔𝑖+1
5
𝑖=3 ). 

 
The scalar curvature of 𝑥 𝑡,𝜑  is defined by 

 

𝐾 =  [𝑔𝑖𝑗 [
𝜕Г𝑖𝑗

𝑙

𝜕𝑥𝑙
−
𝜕Г𝑖𝑙

𝑙

𝜕𝑥𝑗
+  (Г𝑖𝑗

𝑙 Г𝑙𝑚
𝑚 − Г𝑖𝑙

𝑚Г𝑗𝑚
𝑙 )]

2

𝑖 ,𝑗 ,𝑙=1

2

𝑖 ,𝑗 ,𝑙=1

, 
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where  
 

Г𝑖𝑗
𝑘 =

1

2
 𝑔𝑘𝑚 (

𝜕𝑔𝑖𝑚

𝜕𝑥𝑗
+
𝜕𝑔𝑗𝑚

𝜕𝑥𝑙
−
𝜕𝑔𝑖𝑗

𝜕𝑥𝑚
)

2

𝑚=1

, 

 

Christoffel symbols of the second kind where 𝑥𝑖 ∈ {𝑖,𝜑}, {𝑖, 𝑗, 𝑘} indices that take the value 1 or 2 are and (𝑔𝑙𝑚 ) is the 

inverse matrix of (𝑔𝑖𝑗 ). By using the Mathematica programme, we can obtain explicit computation formula of the 

scalar curvature 𝐾 respectively: 

 

                  𝐾 =
𝑃(𝜑𝑚 𝑐𝑜𝑠  𝑛𝜑 ,𝜑𝑚 𝑠𝑖𝑛  𝑛𝜑 )

𝑄 𝜑𝑚 𝑐𝑜𝑠  𝑛𝜑 ,𝜑𝑚 𝑠𝑖𝑛  𝑛𝜑  
 =

   𝐴𝑛 ,𝑚𝜑𝑚 cos 𝑛𝜑 +𝐵𝑛 ,𝑚𝜑𝑚 sin 𝑛𝜑  2
𝑚 =0

4
𝑛=0

   𝐸𝑛 ,𝑚𝜑𝑚 𝑐𝑜𝑠  𝑛𝜑+𝐹𝑛 ,𝑚𝜑𝑚 𝑠𝑖𝑛  𝑛𝜑      4
𝑚 =0

8
𝑛=0

.        (7)                            

 
The assumption of the constancy of the scalar curvature 𝐾 implies that (7) converts into 

 

𝐾𝑄 𝜑𝑚𝑐𝑜𝑠 𝑛𝜑,𝜑𝑚𝑠𝑖𝑛 𝑛𝜑 −  𝑃 𝜑𝑚𝑐𝑜𝑠 𝑛𝜑,𝜑𝑚𝑠𝑖𝑛 𝑛𝜑 = 0.                                      (8) 

 
We can write the equation (8) as a linear combination of the functions {𝜑𝑚𝑐𝑜𝑠 𝑛𝜑,𝜑𝑚𝑠𝑖𝑛 𝑛𝜑}  namely, 

   𝐶𝑛 ,𝑚𝜑𝑚 cos𝑛𝜑 + 𝐷𝑛 ,𝑚𝜑𝑚 sin 𝑛𝜑 2
𝑚=0

4
𝑛=0 , the corresponding coefficients must equal zero. We will analyze the 

cases 𝐾 = 0 and 𝐾 ≠ 0. 

 

V. TWO-DIMENSIONAL KINEMATIC SURFACE WITH 𝑲 = 𝟎 

 

In this subsection we assume that 𝐾 =  0 on the surface 𝑋(𝑡,𝜑). From (7), we have 

 

   𝐴𝑛 ,𝑚𝜑𝑚 cos𝑛𝜑 + 𝐵𝑛 ,𝑚𝜑𝑚 sin 𝑛𝜑 

2

𝑚=0

4

𝑛=0

= 0. 

Then the work consists in the explicit computations of the coefficients 𝐴𝑛  and 𝐵𝑛 . We distinguish different cases that 

fill all possible cases. The coefficient 𝐴1,2 is  

 

𝐴1,2 = 6𝑎𝑠′ 𝛾 − 2𝑎2𝛿 𝜔1 = 0. 
 

But 𝑎 ≠ 0 and 𝑠′ ≠ 0, it follows that 𝜔1  =  0 or 𝛾 =  2𝑎2𝛿. 

(1)  At 𝜔1 = 0. The coefficient 𝐵4,1 = −𝛾(𝑠′2 − 2𝛿) = 0, this leads to 𝛾 = 0 or 𝛿 =
1

2
𝑠′2 . 

(a)  If 𝛾 = 0 from expression (6), we have a contradiction. 

(b)  If 𝛿 =
1

2
𝑠′2  from expression (6), we have 𝜔𝑖 = 0, 𝑖 = 5,6,7 and 𝜎 = 2𝑏2

′ 𝑠′. The coefficient 

 

𝐴2,2 = 2𝑎2𝑠′2(𝑎2𝑠′2 − 𝛾) = 0. 
 
Then 𝛾 = 𝑎2𝑠′2 , from expression (6) we get 𝜔𝑖 = 0, 𝑖 = 2,3,4. 

(2)  At 𝛾 = 2𝑎2𝛿 from expression (6), we have 

 

𝜔2
2 + 𝜔3

2 + 𝜔4
2 = 𝜔5

2 + 𝜔6
2 + 𝜔7

2, 
 

and the coefficient 𝐵3,2 = 𝑎2𝛿(𝑠′2 − 2𝛿 + 𝜔1
2)this gives two possibilities 𝛿 = 0 or 𝛿 =

1

2
(𝑠′2 + 𝜔1

2). 

(a)  If 𝛿 = 0 from expression (6) we have a contradiction. 

(b)  If 𝛿 =
1

2
(𝑠′2 + 𝜔1

2), from expression (6) leads to 𝜔𝑖 = 0, 𝑖 = 2 ≤ 𝑖 ≤ 7,𝛽 = 2𝑎(𝑏1
′ 𝑠′ − 𝑏2

′𝜔1) and 
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𝜎 = 2(𝑏2
′ 𝑠′ + 𝑏1

′𝜔1). The coefficient 

 

𝐴1,0 = 𝜔1
2(1 + 2𝑎2)(2𝑏′1

2 + 2𝑏′2
2 + 𝑠′2 − 2𝛼 + 𝜔1

2) = 0. 
 

Then 𝜔1 = 0or 𝛼 = 𝑏′1
2 + 𝑏′2

2 +
1

2
(𝑠′2 + 𝜔1

2), from expression (6) we have 𝑏3
′ = 𝑏4

′ = 𝑏5
′ = 0. Hence, we conclude the 

following theorem. 

Theorem.1 Let 𝑋(𝑡,𝜑)  be a two-dimensional kinematic surface obtained by the equiform motions of the 

sinusoidal curve 𝑐0  and given by (2) under condition (4). Then 𝐾 =  0 on this surface if and only if one of the 

following conditions satisfies: 

(i) 𝜔𝑖 = 0;      2 ≤  𝑖 ≤ 7, 𝑏𝑗
′ = 0;     𝑗 = 3,4,5. 

   (ii)       𝜔𝑖 = 0,       1 ≤  𝑖 ≤  7. 
 

VI. TWO-DIMENSIONAL KINEMATIC SURFACE WITH 𝑲 ≠ 𝟎 

 

In this subsection we assume that the scalar curvature 𝐾 of the sinusoidal surface 𝑋(𝑡,𝜑) obtained by the equiform 

motions of a sinusoidal curve and given by (2) under condition (4) is a non-zero constant. The identity (8) writes then 

as 

   𝐶𝑛 ,𝑚𝜑𝑚 cos 𝑛𝜑 + 𝐷𝑛 ,𝑚𝜑𝑚 sin𝑛𝜑 

4

𝑚=0

8

𝑛=0

= 0. 

 

Following the same scheme as in the case 𝐾 =  0 studied in subsection (IV), we begin to compute the coefficients 𝐶𝑛 ,𝑚  

and 𝐷𝑛 ,𝑚 . Let us put 𝑡 =  0. The coefficient 

𝐶3,3 =
1

4
𝐾 𝛾 − 𝑎2𝜔1

2 2 = 0. 

But  𝐾 ≠ 0, then 𝛾 = 𝑎2𝜔1
2 from expression (6) we have a contradiction. 

 

Theorem 2. There are not a two-dimensional kinematic surfaces obtained by the motion of a sinusoidal curve 𝑐0 

and given by (2) under condition (4) whose scalar curvature 𝐾 is a non-zero constant. 

 

Corollary 1. Let 𝑋(𝑡,𝜑) be a two-dimensional kinematic surface obtained by the motion of a sinusoidal curve 𝑐0 

and given by (2) under condition (4). If the scalar curvature 𝐾  is constant then 𝐾 =  0. 

 

VII. EXAMPLES OF A TWO – DIMENSIONAL KINEMATIC SURFACE WITH VANISHING SCALAR 

CURVATURE 

 

    In this section, we illustrate the previous results by giving two examples of a two-dimensional kinematic surface 

𝑋(𝑡,𝜑) with constant scalar curvature 𝐾 =  0. The first example corresponds with the case 𝑏1
′ 𝑏2

′ ≠ 0.  In the second 

example, we put 𝑏1
′  =  0, 𝑏2

′  = 0. 
 

Example1.  Case 𝑏1
′ 𝑏2

′ ≠ 0. 
Consider the following orthogonal matrix. 

 

𝐴 𝑡 =

 
 
 
 
 
𝑐𝑜𝑠𝑡 𝑠𝑖𝑛𝑡 0 0 0
−𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 0 0 0

0 0 cos2𝑡 −𝑠𝑖𝑛𝑡 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡
0 0 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡 0
0 0 −𝑠𝑖𝑛𝑡 0 𝑐𝑜𝑠𝑡  

 
 
 
 

 

http://www.ijarset.com/


      
         

                   ISSN: 2350-0328 
 

International Journal of Advanced Research in Science, 

Engineering and Technology 

Vol. 2, Issue 7 , July 2015 

 

Copyright to IJARSET                                              www.ijarset.com                                                                                     741 

 

 

 
we assume that the factor 𝑠 𝑡 = 𝑒𝑡  and 𝑑(𝑡) =  𝑡, 𝑡, 0,0,0 𝑇 . Here we have 𝜔1 = 1, 𝜔8 = 𝜔9 = 1, and 𝜔𝑖 = 0 for 

𝑖 = 2,3, . . . ,7,10, 𝑠′ = 1, 𝑏1
′ = 𝑏2

′ = 1  and 𝑏𝑖
′ = 0 , for 𝑖 = 3,4,5.  Then Theorem 1 says us that the corresponding 

surface 𝑋(𝑡,𝜑) has 𝐾 = 0. In Figure 1, we display a piece of 𝑋(𝑡,𝜑) of Example 1 in axonometric viewpoint 𝑌(𝑡,𝜑). 
For this, the unit vectors 𝐸4 = (0,0,0,1,0)  and 𝐸5 =  (0,0,0,0,1)  are mapped onto the vectors (1,1,0)  and (0,1,1) 

respectively [8]. Then 
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Figure 1: In (a), we have a piece of a kinematic surface in axonometric view 𝑌(𝑡,𝜑) with zero scalar curvature 

𝐾 = 0;  in (b) we have the corresponding surface 𝑋(𝑡,𝜑) with equation (1) that approximates. 

 

Example 2. Case 𝑏1
′ = 𝑏2

′ = 0.  Let now the orthogonal 

 

𝐴 𝑡 =

 
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 𝑐𝑜𝑠𝑡 𝑠𝑖𝑛𝑡 0
0 0 −𝑠𝑖𝑛𝑡 cos2 𝑡 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡
0 0 0 −𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡  
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 We assume 𝑠 𝑡 = 𝑒𝑡and 𝑑(𝑡) =  0,0, 𝑡, 𝑡, 𝑡 𝑇 . Then 
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𝑠′ = 1, 𝜔8 = 𝜔10 =  1, 𝜔𝑘 = 0, 𝑘 = 1,2,3,4,6,5,7,9 
 

𝑏1
′ = 𝑏2

′ = 0;         𝑏3
′ = 𝑏4

′ = 𝑏5
′ = 1. 

 
Theorem 1 says that 𝐾 = 0. We display a piece of 𝑋(𝑡,𝜑) of Example 2 in axonometric viewpoint 𝑌(𝑡,𝜑). 
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Figure 2 In (a), we have a piece of the two dimensional kinematic surface in axonometric view 𝑌(𝑡,𝜑) with zero 

scalar curvature𝐾 = 0; in (b) we have the corresponding surface 𝑋(𝑡,𝜑) with equation (1) that approximates. 
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