

ISSN: 2350-0328

## International Journal of Advanced Research in Science, Engineering and Technology

Vol. 4, Issue 4 , April 2017

# **Graphoidal Cover Independence Number of a Graph**

#### A.Muthukamatchi

Department of Mathematics, R.D. Government Arts College, Sivagangai-630 561 Tamil Nadu, India

**ABSTRACT**: Let G be a graph. Let  $\psi$  be any acyclic graphoidal cover of G. The minimum cardinality of the

maximum  $\psi$  -independence set is called graphoidal cover independence number of G and is denoted by  $\beta_{o\psi}$ .

In this paper, we find graphoidal cover independence number for some standard graphs and some interesting results.

### I. INTRODUCTION

The concept of graphoidal cover and graphoidal covering number of a graph G was introduced by Acharya and Sampathkumar [2].

A graphoidal cover of a graph G is a collection of  $\psi$  of paths(not necessarily open) in G satisfying the following conditions.

(i) Each path in  $\psi$  has at least two vertices.

(ii)Every vertex of G is an internal vertex of at most one path in  $\psi$ .

(iii)Every edge of G is in exactly one path in  $\psi$ .

Arumugam and Suresh Suseela [4] introduced the concept of acyclic graphoidal cover and acyclic graphoidal covering number of a graph G.

A graphoidal cover  $\psi$  of a graph G is called an acyclic graphoidal cover if every member of  $\psi$  is a path. Let  $\psi$  be any acyclic graphoidal cover of G.The maximum cardinality of maximal  $\psi$ -independence set is called  $\psi$ -independence number of a graph G and is denoted by  $\beta_{\alpha\psi}$  (G).

#### Example 1.1.

#### **II.MAIN RESULTS**

Consider the graph G and the corresponding  $\psi$ -graph. Let  $\psi = \{(u_1 u u_2)\} \cup E(G)$ . Then  $\beta_{\alpha \psi}(G) = n - 1$ .





## ISSN: 2350-0328

## International Journal of Advanced Research in Science, Engineering and Technology

#### Vol. 4, Issue 4 , April 2017

### Example 1.2.

Consider the graph G and the corresponding  $\psi$ -graph Let  $\psi = \{(v_1u_1u_2 \dots u_nv_n)\} \cup E(G)$ . Then  $\beta_{o\psi}(G) = n + 1$ .



**Remark 1.3**: From the above examples, we can conclude that for any acyclic graphoidal cover  $\psi$ , there is no relation between  $\beta_0(G)$  and  $\beta_{0\psi}(G)$ 

In the following theorems, we prove that the differences  $\beta_0 - \beta_{0\psi}$  and  $\beta_{0\psi} - \beta_0$  can be made arbitrarily large. **Theorem 1.4.** *Given any positive integer n, there exists a graph G and an acyclic graphoidal cover \psi of G such that*  $\beta_0(G) - \beta_{0\psi}(G) = n$ 

**Proof**. We construct a graph G as follows. Let G be the graph obtained from the cycle  $C = (v_1, v_2, ..., v_n, v_l)$  by attaching three pendant edges to every vertex of C. Let  $x_i$ ,  $y_i$  and  $z_i$  ( $1 \le i \le n$ ) be the pendant vertices which are adjacent to  $v_i$ .

Then  $\psi = \{x_i v_i y_i : 1 \le i \le n\} \cup \{z_i v_i : 1 \le i \le n\} \cup E(G)$  is an acyclic graphoidal cover of G. Further  $G(\psi)$  is isomorphic to  $(C \bullet K_1) \cup n K_2$  so that  $\beta_{o\psi}(G) = 2n$ . Also  $\beta_0(G) = 3n$  and we have  $\beta_0(G) - \beta_{0\psi}(G) = n$ . **Theorem 1.5.** Given any positive integer *n*, there exists a graph G and an acyclic graphoidal cover  $\psi$  of G such that  $\beta_{0\psi}(G) - \beta_0(G) = n$ 

**Proof.** We construct a graph G as follows. Let  $H = K_{1,n}$ . Let  $V(H) = V(H) = \{v, v_1, v_2...v_n\}$  be the vertex set of H and v be the centre vertex of H. Subdivide H by once and  $u_1, u_2, u_3...u_n$  be the subdividing vertices and attach a pendant to the vertex v and call it as w and denote the graph as G. Now |G| = 2n + 2. Let  $\psi$  be any acyclic graphoidal cover of G.Let S be the set of vertices which are interior to  $\psi$ . Let  $S = \{u_1, u_2, u_3...u_n\}$  and  $\psi = \{vu_iv_i/1 \le i \le n\} \cup \{vw\}$ . Then  $G(\psi)$  is isomorphic to  $K_{1,n+1} \cup (nK_1)$  and  $\beta_{o\psi}(G) = n + 1 + n = 2n + 1$  and  $\beta_0(G) = n + 1$ , so that

$$\beta_{ow}(G) - \beta_0(G) = 2n + 1 - (n + 1) = n$$

Problem 1.6. Does there exist a graph G such that

(i)  $\beta_{o\psi}(G) - \beta_0(G) > n$ (ii)  $\beta_0(G) - \beta_{o\psi}(G) < n$ 



# International Journal of Advanced Research in Science, Engineering and Technology

ISSN: 2350-0328

## Vol. 4, Issue 4, April 2017

**Remark 1.7.** For any two minimum graphoidal covers  $\Psi_1$  and  $\Psi_2$ ,  $\beta_{0\psi_1} \neq \beta_{0\psi_2}$  and not isomorphic also. For example, consider the graph G,



Let  $\psi_1 = \{(1\ 3\ 2)(5\ 7\ 6)(9\ 8\ 10)(13\ 11\ 14)(7\ 4\ 3)(8\ 4)(4\ 11)(11\ 12)\}$ , then  $G(\psi_1)$  is given below.





# International Journal of Advanced Research in Science, Engineering and Technology

ISSN: 2350-0328

Vol. 4, Issue 4 , April 2017

Let  $\psi_2 = \{(1\ 3\ 2)(5\ 7\ 6)(9\ 8\ 10)(13\ 11\ 14)(8\ 4\ 11)(11\ 12)(7\ 4)(4\ 3)\}$ , then  $G(\psi_2)$  is given below.



**Theorem 1.8.** Let T be a tree. Then for any minimum acyclic graphoidal cover  $\psi$  of T,  $\beta_{o\psi}(T) = n-1$ , if and only if  $T = P_n$ , where n is the number of vertices.

**Proof.** Let  $T = P_n$  then obviously  $\beta_{o\psi}(T) = n - 1$ . If  $\beta_{o\psi}(T) = n - 1$ , then we have to prove that  $T = P_n$ . Suppose  $T \neq P_n$ . Then at least one vertex of degree  $\geq 3$ . Then all vertices of degree  $\geq 2$  are interior to  $\psi$ , since  $\psi$  is a minimum graphoidal cover and  $G(\psi)$  is isomorphic to  $(n - 4) K_1 \cup 2 K_2$  and  $\beta_{o\psi}(T) = n - 2$  which is a contradiction. This completes the proof.

**Problem 1.9.** Characterise the graphs G for which  $\beta_{ow}(G) = n - 1$ .

**Theorem 1.10.** For any acyclic graphoidal cover  $\psi$  of the path  $G = P_n$  on n vertices,

$$\beta_{0\psi}(G) = n - (k+1) + \left\lceil \frac{k+1}{2} \right\rceil \text{ where } k = |\psi|.$$

**Proof.** Let  $G = P_n$  be a path on n vertices. It is clear that for any graphoidal cover  $\psi$  of  $G, G(\psi)$  is isomorphic to

$$P_{k+1} \cup (n - (k+1))K_1$$
 where  $k = |\psi|$ , so that  $\beta_{0\psi} = n - (k+1) + \left\lceil \frac{k+1}{2} \right\rceil$ .

**Theorem 1.11.** For any acyclic graphoidal cover  $\Psi$  of the cycle  $G = C_n$  on n vertices,  $\beta_{0\psi}(G) = n - k + \left|\frac{k}{2}\right|$ 

where 
$$\mathbf{k} = |\Psi|$$
.



#### ISSN: 2350-0328

## International Journal of Advanced Research in Science, Engineering and Technology

#### Vol. 4, Issue 4, April 2017

**Proof.** Let  $G = C_n$  be a cycle on n vertices. It is clear that for any graphoidal cover  $\psi$  of  $G, G(\psi)$  is isomorphic to

 $C_k \cup (n-k)K_1$  where  $k = |\psi|$ , so that  $\beta_{0\psi}(G) = n-k + \left|\frac{k}{2}\right|$ 

**Theorem 1.12.** Let T be any tree with n pendant vertices and let 'r' denote the number of vertices of degree two. Then for any minimum acyclic graphoidal cover  $\psi$ ,  $\beta_{aw}(T) \le n + r - 1$ .

**Proof.** Let  $\psi = \{P_1, P_2, P_3 \dots P_{n-1}\}$  be a minimum acyclic graphoidal cover of T. Let  $v_i, 1 \le i \le n-1$  be an end vertex of  $P_{i.}$ . Then  $D = \{v_1, v_2, v_3 \dots v_{n-1}\} \cup \{u_1, u_2, u_3 \dots u_r\}$  where  $u_{l, u_2, \dots, u_r}$  are the vertices of degree two is an independence of  $T(\psi)$ . Hence  $\beta_{o\psi}(T) \le n-1+r = n+r-1$ 

**Problem1.13**. Characterize the graphs G for which  $\beta_{ow}(G) = n + r - 1$ 

#### **III.CONCLUSION**

We find graphoidal cover independence number for some standard graphs and some interesting results and also we can find graphoidal cover independence number for any graph.

#### REFERENCES

- [1] B. D. Acharya and Purnima Gupta, Domination in graphoidal covers of a graph, Discrete Math., 206(1999), 3 33.
- [2] B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J. pure appl. Math., 18(10)(1987), 882 - 890.
- [3] S. Arumugam, B. D. Acharya and E. Sampathkumar, Graphoidal covers of a graph A creative review, Proceedings of the National workshop On Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli, Eds. S. Arumugam, B. D. Acharya and E. Sampathkumar, Tata McGraw Hill, (1996), 1 - 28.
- [4] S. Arumugam and J. Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, Discrete Math., 190(1998), 67 77.
- [5] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, CRC Press, Boca Raton, 2004.
- [6] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7(1977), 241 261.