ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 4 , April 2017

Graphoidal Cover Independence Number of a Graph

A.Muthukamatchi
Department of Mathematics, R.D. Government Arts College,Sivagangai-630 561 Tamil Nadu, India

Abstract

Let G be a graph. Let ψ be any acyclic graphoidal cover of G. The minimum cardinality of the maximum ψ-independence set is called graphoidal cover independence number of G and is denoted by $\beta_{o \psi}$.

In this paper, we find graphoidal cover independence number for some standard graphs and some interesting results.

I. INTRODUCTION

The concept of graphoidal cover and graphoidal covering number of a graph G was introduced by Acharya and Sampathkumar [2].

A graphoidal cover of a graph G is a collection of ψ of paths(not necessarily open) in G satisfying the following conditions.
(i) Each path in ψ has at least two vertices.
(ii)Every vertex of G is an internal vertex of at most one path in ψ.
(iii)Every edge of G is in exactly one path in ψ.

Arumugam and Suresh Suseela [4] introduced the concept of acyclic graphoidal cover and acyclic graphoidal covering number of a graph G.

A graphoidal cover ψ of a graph G is called an acyclic graphoidal cover if every member of ψ is a path. Let ψ be any acyclic graphoidal cover of G.The maximum cardinality of maximal ψ-independence set is called ψ independence number of a graph G and is denoted by $\beta_{o \psi}(\mathrm{G})$.

II.MAIN RESULTS

Example 1.1.

Consider the graph G and the corresponding ψ-graph. Let $\psi=\left\{\left(\mathrm{u}_{1} \mathrm{uu}_{2}\right)\right\} \cup \mathrm{E}(\mathrm{G})$. Then $\beta_{o \psi}(\mathrm{G})=\mathrm{n}-1$.

G

$G(\psi)$

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 4 , April 2017

Example 1.2.

Consider the graph G and the corresponding ψ-graph Let $\psi=\left\{\left(\mathrm{v}_{1} \mathrm{u}_{1} \mathrm{u}_{2} \ldots \ldots . \mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)\right\} \cup \mathrm{E}(\mathrm{G})$. Then $\beta_{o \psi}(\mathrm{G})=\mathrm{n}+1$.

Remark 1.3: From the above examples, we can conclude that for any acyclic graphoidal cover ψ, there is no relation between $\beta_{0}(G)$ and $\beta_{0 \psi}(G)$

In the following theorems, we prove that the differences $\beta_{0}-\beta_{0 \psi}$ and $\beta_{0 \psi}-\beta_{0}$ can be made arbitrarily large.
Theorem 1.4. Given any positive integer n, there exists a graph G and an acyclic graphoidal cover ψ of G such that $\beta_{0}(G)-\beta_{0 \psi}(G)=n$
Proof. We construct a graph G as follows. Let G be the graph obtained from the cycle $\mathrm{C}=\left(v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right)$ by attaching three pendant edges to every vertex of C .Let x_{i}, y_{i} and $z_{i}(1 \leq \mathrm{i} \leq \mathrm{n})$ be the pendant vertices which are adjacent to v_{i}.
Then $\psi=\left\{x_{i} v_{i} y_{i}: 1 \leq i \leq n\right\} \cup\left\{z_{i} v_{i}: 1 \leq i \leq n\right\} \cup E(G)$ is an acyclic graphoidal cover of G . Further $\mathrm{G}(\psi)$ is isomorphic to $\left(\mathrm{C} \bullet \mathrm{K}_{1}\right) \cup \mathrm{n} \mathrm{K}_{2}$ so that $\beta_{o \psi}(\mathrm{G})=2 \mathrm{n}$. Also $\beta_{0}(G)=3 \mathrm{n}$ and we have $\beta_{0}(G)-\beta_{0 \psi}(G)=\mathrm{n}$.
Theorem 1.5. Given any positive integer n, there exists a graph G and an acyclic graphoidal cover ψ of G such that $\beta_{0 \psi}(G)-\beta_{0}(G)=n$
Proof. We construct a graph G as follows. Let $\mathrm{H}=\mathrm{K}_{1, \mathrm{n} \text {. }}$ Let $\mathrm{V}(\mathrm{H})=V(H)=\left\{v, v_{1}, v_{2} \ldots v_{n}\right\}$ be the vertex set of H and v be the centre vertex of H. Subdivide H by once and $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3} \ldots \mathrm{u}_{\mathrm{n}}$ be the subdividing vertices and attach a pendant to the vertex v and call it as w and denote the graph as G. Now $|G|=2 n+2$. Let ψ be any acyclic graphoidal cover of G.Let S be the set of vertices which are interior to ψ.Let $S=\left\{u_{1}, u_{2}, u_{3} \ldots u_{n}\right\}$ and $\psi=\left\{v u_{i} v_{i} / 1 \leq i \leq n\right\} \cup\{v w\}$. Then $\mathrm{G}(\psi)$ is isomorphic to $\mathrm{K}_{1, \mathrm{n}+1} \cup\left(\mathrm{nK}_{1}\right)$ and $\beta_{o \psi}(\mathrm{G})=\mathrm{n}+1+\mathrm{n}=2 \mathrm{n}+1$ and $\beta_{0}(G)=\mathrm{n}+1$, so that $\beta_{o \psi}(\mathrm{G})-\beta_{0}(G)=2 \mathrm{n}+1-(\mathrm{n}+1)=\mathrm{n}$

Problem 1.6. Does there exist a graph G such that
(i) $\beta_{o \psi}(\mathrm{G})-\beta_{0}(G)>\mathrm{n}$
(ii) $\beta_{0}(G)-\beta_{o \psi}(\mathrm{G})<\mathrm{n}$

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 4 , April 2017

Remark 1.7.For any two minimum graphoidal covers ψ_{1} and $\psi_{2}, \beta_{0 \psi_{1}} \neq \beta_{0 \psi_{2}}$ and not isomorphic also. For example, consider the graph G,

G

Let $\psi_{1}=\{(132)(576)(9810)(131114)(743)(84)(411)(1112)\}$, then $\mathrm{G}\left(\psi_{1}\right)$ is given below.

9
10
$\mathrm{G}\left(\psi_{1}\right)$
$\beta_{0}\left(\psi_{1}\right)=7$

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 4 , April 2017

Let $\psi_{2}=\{(132)(576)(9810)(131114)(8411)(1112)(74)(43)\}$, then $G\left(\psi_{2}\right)$ is given below.

Theorem 1.8. Let T be a tree. Then for any minimum acyclic graphoidal cover ψ of $T, \beta_{o \psi}(T)=n-1$, if and only if $T=P_{n}$, where n is the number of vertices.
Proof. Let $\mathrm{T}=\mathrm{P}_{\mathrm{n}}$ then obviously $\beta_{o \psi}(T)=n-1$. If $\beta_{o \psi}(T)=n-1$, then we have to prove that $T=P_{n}$. Suppose $\mathrm{T} \neq$ P_{n}. Then at least one vertex of degree ≥ 3. Then all vertices of degree ≥ 2 are interior to ψ, since ψ is a minimum graphoidal cover and $\mathrm{G}(\psi)$ is isomorphic to $(\mathrm{n}-4) \mathrm{K}_{1} \cup 2 \mathrm{~K}_{2}$ and $\quad \beta_{o \psi}(\mathrm{~T})=\mathrm{n}-2$ which is a contradiction. This completes the proof.
Problem 1.9. Characterise the graphs G for which $\beta_{o \psi}(G)=n-1$.
Theorem 1.10. For any acyclic graphoidal cover ψ of the path $G=P_{n}$ on n vertices,
$\beta_{0 \psi}(G)=n-(k+1)+\left\lceil\frac{k+1}{2}\right\rceil$ where $k=|\psi|$.
Proof. Let $\mathrm{G}=\mathrm{P}_{\mathrm{n}}$ be a path on n vertices. It is clear that for any graphoidal cover ψ of $\mathrm{G}, \mathrm{G}(\psi)$ is isomorphic to $P_{k+1} \cup(n-(k+1)) K_{1}$ where k $=|\psi|$, so that $\beta_{0 \psi}=n-(k+1)+\left\lceil\frac{k+1}{2}\right\rceil$.
Theorem 1.11. For any acyclic graphoidal cover ψ of the cycle $G=C_{n}$ on n vertices, $\beta_{0 \psi}(G)=n-k+\left\lceil\frac{k}{2}\right\rceil$ where $\mathrm{k}=|\psi|$.

ISSN: 2350-0328

International Journal of Advanced Research in Science, Engineering and Technology
 Vol. 4, Issue 4 , April 2017

Proof. Let $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$ be a cycle on n vertices. It is clear that for any graphoidal cover ψ of $\mathrm{G}, \mathrm{G}(\psi)$ is isomorphic to $C_{k} \cup(n-k) K_{1}$ where $k=|\psi|$,so that $\beta_{0 \psi}(G)=n-k+\left\lceil\frac{k}{2}\right\rceil$
Theorem 1.12. Let T be any tree with n pendant vertices and let ' r ' denote the number of vertices of degree two. Then for any minimum acyclic graphoidal cover $\psi, \beta_{o \psi}(T) \leq n+r-1$.
Proof. Let $\psi=\left\{P_{1}, P_{2}, P_{3} \ldots P_{n-1}\right\}$ be a minimum acyclic graphoidal cover of T. Let $v_{i}, 1 \leq i \leq n-1$ be an end vertex of $P_{i . .}$ Then $D=\left\{v_{1}, v_{2}, v_{3} \ldots v_{n-1}\right\} \cup\left\{u_{1}, u_{2}, u_{3} \ldots u_{r}\right\}$ where $u_{1,}, u_{2} \ldots . . . u_{r}$ are the vertices of degree two is an independence of $T(\psi)$. Hence $\beta_{o \psi}(T) \leq n-1+r=n+r-1$
Problem1.13. Characterize the graphs G for which $\beta_{\text {ow }}(G)=n+r-1$

III.CONCLUSION

We find graphoidal cover independence number for some standard graphs and some interesting results and also we can find graphoidal cover independence number for any graph.

REFERENCES

[1] B. D. Acharya and Purnima Gupta, Domination in graphoidal covers of a graph, Discrete Math., 206(1999), 3 - 33.
[2] B. D. Acharya and E. Sampathkumar, Graphoidal covers and graphoidal covering number of a graph, Indian J. pure appl. Math., 18(10)(1987), 882-890.
[3] S. Arumugam, B. D. Acharya and E. Sampathkumar, Graphoidal covers of a graph - A creative review, Proceedings of the National workshop On Graph Theory and its Applications, Manonmaniam Sundaranar University, Tirunelveli, Eds. S. Arumugam, B. D. Acharya and E. Sampathkumar, Tata McGraw Hill, (1996), 1-28.
[4] S. Arumugam and J. Suresh Suseela, Acyclic graphoidal covers and path partitions in a graph, Discrete Math.,190(1998), 67-77
[5] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition, CRC Press, Boca Raton, 2004.
[6] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7(1977), 241-261.

